Viewing file: stl_algo.h (181.77 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// Algorithm implementation -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version.
// This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA.
// As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License.
/* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */
/** @file stl_algo.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */
#ifndef _ALGO_H #define _ALGO_H 1
#include <bits/stl_heap.h> #include <bits/stl_tempbuf.h> // for _Temporary_buffer #include <debug/debug.h>
// See concept_check.h for the __glibcxx_*_requires macros.
_GLIBCXX_BEGIN_NAMESPACE(std)
/** * @brief Find the median of three values. * @param a A value. * @param b A value. * @param c A value. * @return One of @p a, @p b or @p c. * * If @c {l,m,n} is some convolution of @p {a,b,c} such that @c l<=m<=n * then the value returned will be @c m. * This is an SGI extension. * @ingroup SGIextensions */ template<typename _Tp> inline const _Tp& __median(const _Tp& __a, const _Tp& __b, const _Tp& __c) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) if (__a < __b) if (__b < __c) return __b; else if (__a < __c) return __c; else return __a; else if (__a < __c) return __a; else if (__b < __c) return __c; else return __b; }
/** * @brief Find the median of three values using a predicate for comparison. * @param a A value. * @param b A value. * @param c A value. * @param comp A binary predicate. * @return One of @p a, @p b or @p c. * * If @c {l,m,n} is some convolution of @p {a,b,c} such that @p comp(l,m) * and @p comp(m,n) are both true then the value returned will be @c m. * This is an SGI extension. * @ingroup SGIextensions */ template<typename _Tp, typename _Compare> inline const _Tp& __median(const _Tp& __a, const _Tp& __b, const _Tp& __c, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BinaryFunctionConcept<_Compare,bool,_Tp,_Tp>) if (__comp(__a, __b)) if (__comp(__b, __c)) return __b; else if (__comp(__a, __c)) return __c; else return __a; else if (__comp(__a, __c)) return __a; else if (__comp(__b, __c)) return __c; else return __b; }
/** * @brief Apply a function to every element of a sequence. * @param first An input iterator. * @param last An input iterator. * @param f A unary function object. * @return @p f. * * Applies the function object @p f to each element in the range * @p [first,last). @p f must not modify the order of the sequence. * If @p f has a return value it is ignored. */ template<typename _InputIterator, typename _Function> _Function for_each(_InputIterator __first, _InputIterator __last, _Function __f) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_requires_valid_range(__first, __last); for ( ; __first != __last; ++__first) __f(*__first); return __f; }
/** * @if maint * This is an overload used by find() for the Input Iterator case. * @endif */ template<typename _InputIterator, typename _Tp> inline _InputIterator __find(_InputIterator __first, _InputIterator __last, const _Tp& __val, input_iterator_tag) { while (__first != __last && !(*__first == __val)) ++__first; return __first; }
/** * @if maint * This is an overload used by find_if() for the Input Iterator case. * @endif */ template<typename _InputIterator, typename _Predicate> inline _InputIterator __find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred, input_iterator_tag) { while (__first != __last && !__pred(*__first)) ++__first; return __first; }
/** * @if maint * This is an overload used by find() for the RAI case. * @endif */ template<typename _RandomAccessIterator, typename _Tp> _RandomAccessIterator __find(_RandomAccessIterator __first, _RandomAccessIterator __last, const _Tp& __val, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2;
for ( ; __trip_count > 0 ; --__trip_count) { if (*__first == __val) return __first; ++__first;
if (*__first == __val) return __first; ++__first;
if (*__first == __val) return __first; ++__first;
if (*__first == __val) return __first; ++__first; }
switch (__last - __first) { case 3: if (*__first == __val) return __first; ++__first; case 2: if (*__first == __val) return __first; ++__first; case 1: if (*__first == __val) return __first; ++__first; case 0: default: return __last; } }
/** * @if maint * This is an overload used by find_if() for the RAI case. * @endif */ template<typename _RandomAccessIterator, typename _Predicate> _RandomAccessIterator __find_if(_RandomAccessIterator __first, _RandomAccessIterator __last, _Predicate __pred, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIterator>::difference_type __trip_count = (__last - __first) >> 2;
for ( ; __trip_count > 0 ; --__trip_count) { if (__pred(*__first)) return __first; ++__first;
if (__pred(*__first)) return __first; ++__first;
if (__pred(*__first)) return __first; ++__first;
if (__pred(*__first)) return __first; ++__first; }
switch (__last - __first) { case 3: if (__pred(*__first)) return __first; ++__first; case 2: if (__pred(*__first)) return __first; ++__first; case 1: if (__pred(*__first)) return __first; ++__first; case 0: default: return __last; } }
/** * @if maint * This is an overload of find() for streambuf iterators. * @endif */ template<typename _CharT> typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, istreambuf_iterator<_CharT> >::__type find(istreambuf_iterator<_CharT>, istreambuf_iterator<_CharT>, const _CharT&);
/** * @brief Find the first occurrence of a value in a sequence. * @param first An input iterator. * @param last An input iterator. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last) * such that @c *i == @p val, or @p last if no such iterator exists. */ template<typename _InputIterator, typename _Tp> inline _InputIterator find(_InputIterator __first, _InputIterator __last, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); return std::__find(__first, __last, __val, std::__iterator_category(__first)); }
/** * @brief Find the first element in a sequence for which a predicate is true. * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The first iterator @c i in the range @p [first,last) * such that @p pred(*i) is true, or @p last if no such iterator exists. */ template<typename _InputIterator, typename _Predicate> inline _InputIterator find_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); return std::__find_if(__first, __last, __pred, std::__iterator_category(__first)); }
/** * @brief Find two adjacent values in a sequence that are equal. * @param first A forward iterator. * @param last A forward iterator. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [first,last) and such that @c *i == @c *(i+1), * or @p last if no such iterator exists. */ template<typename _ForwardIterator> _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _ForwardIterator __next = __first; while(++__next != __last) { if (*__first == *__next) return __first; __first = __next; } return __last; }
/** * @brief Find two adjacent values in a sequence using a predicate. * @param first A forward iterator. * @param last A forward iterator. * @param binary_pred A binary predicate. * @return The first iterator @c i such that @c i and @c i+1 are both * valid iterators in @p [first,last) and such that * @p binary_pred(*i,*(i+1)) is true, or @p last if no such iterator * exists. */ template<typename _ForwardIterator, typename _BinaryPredicate> _ForwardIterator adjacent_find(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); if (__first == __last) return __last; _ForwardIterator __next = __first; while(++__next != __last) { if (__binary_pred(*__first, *__next)) return __first; __first = __next; } return __last; }
/** * @brief Count the number of copies of a value in a sequence. * @param first An input iterator. * @param last An input iterator. * @param value The value to be counted. * @return The number of iterators @c i in the range @p [first,last) * for which @c *i == @p value */ template<typename _InputIterator, typename _Tp> typename iterator_traits<_InputIterator>::difference_type count(_InputIterator __first, _InputIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last); typename iterator_traits<_InputIterator>::difference_type __n = 0; for ( ; __first != __last; ++__first) if (*__first == __value) ++__n; return __n; }
/** * @brief Count the elements of a sequence for which a predicate is true. * @param first An input iterator. * @param last An input iterator. * @param pred A predicate. * @return The number of iterators @c i in the range @p [first,last) * for which @p pred(*i) is true. */ template<typename _InputIterator, typename _Predicate> typename iterator_traits<_InputIterator>::difference_type count_if(_InputIterator __first, _InputIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); typename iterator_traits<_InputIterator>::difference_type __n = 0; for ( ; __first != __last; ++__first) if (__pred(*__first)) ++__n; return __n; }
/** * @brief Search a sequence for a matching sub-sequence. * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @param last2 A forward iterator. * @return The first iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N) * for each @c N in the range @p [0,last2-first2), or @p last1 if no * such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) and * returns an iterator to the first element of the sub-sequence, or * @p last1 if the sub-sequence is not found. * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template<typename _ForwardIterator1, typename _ForwardIterator2> _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1;
// Test for a pattern of length 1. _ForwardIterator2 __tmp(__first2); ++__tmp; if (__tmp == __last2) return std::find(__first1, __last1, *__first2);
// General case. _ForwardIterator2 __p1, __p; __p1 = __first2; ++__p1; _ForwardIterator1 __current = __first1;
while (__first1 != __last1) { __first1 = std::find(__first1, __last1, *__first2); if (__first1 == __last1) return __last1;
__p = __p1; __current = __first1; if (++__current == __last1) return __last1;
while (*__current == *__p) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; }
/** * @brief Search a sequence for a matching sub-sequence using a predicate. * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @param last2 A forward iterator. * @param predicate A binary predicate. * @return The first iterator @c i in the range * @p [first1,last1-(last2-first2)) such that * @p predicate(*(i+N),*(first2+N)) is true for each @c N in the range * @p [0,last2-first2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2), * using @p predicate to determine equality, and returns an iterator * to the first element of the sub-sequence, or @p last1 if no such * iterator exists. * * @see search(_ForwardIter1, _ForwardIter1, _ForwardIter2, _ForwardIter2) */ template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> _ForwardIterator1 search(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __predicate) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
// Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1;
// Test for a pattern of length 1. _ForwardIterator2 __tmp(__first2); ++__tmp; if (__tmp == __last2) { while (__first1 != __last1 && !__predicate(*__first1, *__first2)) ++__first1; return __first1; }
// General case. _ForwardIterator2 __p1, __p; __p1 = __first2; ++__p1; _ForwardIterator1 __current = __first1;
while (__first1 != __last1) { while (__first1 != __last1) { if (__predicate(*__first1, *__first2)) break; ++__first1; } while (__first1 != __last1 && !__predicate(*__first1, *__first2)) ++__first1; if (__first1 == __last1) return __last1;
__p = __p1; __current = __first1; if (++__current == __last1) return __last1;
while (__predicate(*__current, *__p)) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; }
/** * @if maint * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&) * overloaded for forward iterators. * @endif */ template<typename _ForwardIterator, typename _Integer, typename _Tp> _ForwardIterator __search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, std::forward_iterator_tag) { __first = std::find(__first, __last, __val); while (__first != __last) { typename iterator_traits<_ForwardIterator>::difference_type __n = __count; _ForwardIterator __i = __first; ++__i; while (__i != __last && __n != 1 && *__i == __val) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = std::find(++__i, __last, __val); } return __last; }
/** * @if maint * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&) * overloaded for random access iterators. * @endif */ template<typename _RandomAccessIter, typename _Integer, typename _Tp> _RandomAccessIter __search_n(_RandomAccessIter __first, _RandomAccessIter __last, _Integer __count, const _Tp& __val, std::random_access_iterator_tag) { typedef typename std::iterator_traits<_RandomAccessIter>::difference_type _DistanceType;
_DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count;
if (__tailSize < __pattSize) return __last;
const _DistanceType __skipOffset = __pattSize - 1; _RandomAccessIter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize;
while (1) // the main loop... { // __lookAhead here is always pointing to the last element of next // possible match. while (!(*__lookAhead == __val)) // the skip loop... { if (__tailSize < __pattSize) return __last; // Failure __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_RandomAccessIter __backTrack = __lookAhead - 1; *__backTrack == __val; --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); // Success } if (__remainder > __tailSize) return __last; // Failure __lookAhead += __remainder; __tailSize -= __remainder; } }
/** * @brief Search a sequence for a number of consecutive values. * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @return The first iterator @c i in the range @p [first,last-count) * such that @c *(i+N) == @p val for each @c N in the range @p [0,count), * or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * equal to @p val. */ template<typename _ForwardIterator, typename _Integer, typename _Tp> _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last);
if (__count <= 0) return __first; if (__count == 1) return std::find(__first, __last, __val); return std::__search_n(__first, __last, __count, __val, std::__iterator_category(__first)); }
/** * @if maint * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&, * _BinaryPredicate) * overloaded for forward iterators. * @endif */ template<typename _ForwardIterator, typename _Integer, typename _Tp, typename _BinaryPredicate> _ForwardIterator __search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred, std::forward_iterator_tag) { while (__first != __last && !__binary_pred(*__first, __val)) ++__first;
while (__first != __last) { typename iterator_traits<_ForwardIterator>::difference_type __n = __count; _ForwardIterator __i = __first; ++__i; while (__i != __last && __n != 1 && __binary_pred(*__i, __val)) { ++__i; --__n; } if (__n == 1) return __first; if (__i == __last) return __last; __first = ++__i; while (__first != __last && !__binary_pred(*__first, __val)) ++__first; } return __last; }
/** * @if maint * This is an uglified * search_n(_ForwardIterator, _ForwardIterator, _Integer, const _Tp&, * _BinaryPredicate) * overloaded for random access iterators. * @endif */ template<typename _RandomAccessIter, typename _Integer, typename _Tp, typename _BinaryPredicate> _RandomAccessIter __search_n(_RandomAccessIter __first, _RandomAccessIter __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred, std::random_access_iterator_tag) { typedef typename std::iterator_traits<_RandomAccessIter>::difference_type _DistanceType;
_DistanceType __tailSize = __last - __first; const _DistanceType __pattSize = __count;
if (__tailSize < __pattSize) return __last;
const _DistanceType __skipOffset = __pattSize - 1; _RandomAccessIter __lookAhead = __first + __skipOffset; __tailSize -= __pattSize;
while (1) // the main loop... { // __lookAhead here is always pointing to the last element of next // possible match. while (!__binary_pred(*__lookAhead, __val)) // the skip loop... { if (__tailSize < __pattSize) return __last; // Failure __lookAhead += __pattSize; __tailSize -= __pattSize; } _DistanceType __remainder = __skipOffset; for (_RandomAccessIter __backTrack = __lookAhead - 1; __binary_pred(*__backTrack, __val); --__backTrack) { if (--__remainder == 0) return (__lookAhead - __skipOffset); // Success } if (__remainder > __tailSize) return __last; // Failure __lookAhead += __remainder; __tailSize -= __remainder; } }
/** * @brief Search a sequence for a number of consecutive values using a * predicate. * @param first A forward iterator. * @param last A forward iterator. * @param count The number of consecutive values. * @param val The value to find. * @param binary_pred A binary predicate. * @return The first iterator @c i in the range @p [first,last-count) * such that @p binary_pred(*(i+N),val) is true for each @c N in the * range @p [0,count), or @p last if no such iterator exists. * * Searches the range @p [first,last) for @p count consecutive elements * for which the predicate returns true. */ template<typename _ForwardIterator, typename _Integer, typename _Tp, typename _BinaryPredicate> _ForwardIterator search_n(_ForwardIterator __first, _ForwardIterator __last, _Integer __count, const _Tp& __val, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last);
if (__count <= 0) return __first; if (__count == 1) { while (__first != __last && !__binary_pred(*__first, __val)) ++__first; return __first; } return std::__search_n(__first, __last, __count, __val, __binary_pred, std::__iterator_category(__first)); }
/** * @brief Swap the elements of two sequences. * @param first1 A forward iterator. * @param last1 A forward iterator. * @param first2 A forward iterator. * @return An iterator equal to @p first2+(last1-first1). * * Swaps each element in the range @p [first1,last1) with the * corresponding element in the range @p [first2,(last1-first1)). * The ranges must not overlap. */ template<typename _ForwardIterator1, typename _ForwardIterator2> _ForwardIterator2 swap_ranges(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_ForwardIterator2>::value_type, typename iterator_traits<_ForwardIterator1>::value_type>) __glibcxx_requires_valid_range(__first1, __last1);
for ( ; __first1 != __last1; ++__first1, ++__first2) std::iter_swap(__first1, __first2); return __first2; }
/** * @brief Perform an operation on a sequence. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param unary_op A unary operator. * @return An output iterator equal to @p result+(last-first). * * Applies the operator to each element in the input range and assigns * the results to successive elements of the output sequence. * Evaluates @p *(result+N)=unary_op(*(first+N)) for each @c N in the * range @p [0,last-first). * * @p unary_op must not alter its argument. */ template<typename _InputIterator, typename _OutputIterator, typename _UnaryOperation> _OutputIterator transform(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _UnaryOperation __unary_op) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _UnaryOperation" __typeof__(__unary_op(*__first))>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first, ++__result) *__result = __unary_op(*__first); return __result; }
/** * @brief Perform an operation on corresponding elements of two sequences. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param result An output iterator. * @param binary_op A binary operator. * @return An output iterator equal to @p result+(last-first). * * Applies the operator to the corresponding elements in the two * input ranges and assigns the results to successive elements of the * output sequence. * Evaluates @p *(result+N)=binary_op(*(first1+N),*(first2+N)) for each * @c N in the range @p [0,last1-first1). * * @p binary_op must not alter either of its arguments. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _BinaryOperation> _OutputIterator transform(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _OutputIterator __result, _BinaryOperation __binary_op) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _BinaryOperation" __typeof__(__binary_op(*__first1,*__first2))>) __glibcxx_requires_valid_range(__first1, __last1);
for ( ; __first1 != __last1; ++__first1, ++__first2, ++__result) *__result = __binary_op(*__first1, *__first2); return __result; }
/** * @brief Replace each occurrence of one value in a sequence with another * value. * @param first A forward iterator. * @param last A forward iterator. * @param old_value The value to be replaced. * @param new_value The replacement value. * @return replace() returns no value. * * For each iterator @c i in the range @p [first,last) if @c *i == * @p old_value then the assignment @c *i = @p new_value is performed. */ template<typename _ForwardIterator, typename _Tp> void replace(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __old_value, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_function_requires(_ConvertibleConcept<_Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first) if (*__first == __old_value) *__first = __new_value; }
/** * @brief Replace each value in a sequence for which a predicate returns * true with another value. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate. * @param new_value The replacement value. * @return replace_if() returns no value. * * For each iterator @c i in the range @p [first,last) if @p pred(*i) * is true then the assignment @c *i = @p new_value is performed. */ template<typename _ForwardIterator, typename _Predicate, typename _Tp> void replace_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_ConvertibleConcept<_Tp, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first) if (__pred(*__first)) *__first = __new_value; }
/** * @brief Copy a sequence, replacing each element of one value with another * value. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param old_value The value to be replaced. * @param new_value The replacement value. * @return The end of the output sequence, @p result+(last-first). * * Copies each element in the input range @p [first,last) to the * output range @p [result,result+(last-first)) replacing elements * equal to @p old_value with @p new_value. */ template<typename _InputIterator, typename _OutputIterator, typename _Tp> _OutputIterator replace_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __old_value, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first, ++__result) if (*__first == __old_value) *__result = __new_value; else *__result = *__first; return __result; }
/** * @brief Copy a sequence, replacing each value for which a predicate * returns true with another value. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param pred A predicate. * @param new_value The replacement value. * @return The end of the output sequence, @p result+(last-first). * * Copies each element in the range @p [first,last) to the range * @p [result,result+(last-first)) replacing elements for which * @p pred returns true with @p new_value. */ template<typename _InputIterator, typename _OutputIterator, typename _Predicate, typename _Tp> _OutputIterator replace_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred, const _Tp& __new_value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first, ++__result) if (__pred(*__first)) *__result = __new_value; else *__result = *__first; return __result; }
/** * @brief Assign the result of a function object to each value in a * sequence. * @param first A forward iterator. * @param last A forward iterator. * @param gen A function object taking no arguments. * @return generate() returns no value. * * Performs the assignment @c *i = @p gen() for each @c i in the range * @p [first,last). */ template<typename _ForwardIterator, typename _Generator> void generate(_ForwardIterator __first, _ForwardIterator __last, _Generator __gen) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_GeneratorConcept<_Generator, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first) *__first = __gen(); }
/** * @brief Assign the result of a function object to each value in a * sequence. * @param first A forward iterator. * @param n The length of the sequence. * @param gen A function object taking no arguments. * @return The end of the sequence, @p first+n * * Performs the assignment @c *i = @p gen() for each @c i in the range * @p [first,first+n). */ template<typename _OutputIterator, typename _Size, typename _Generator> _OutputIterator generate_n(_OutputIterator __first, _Size __n, _Generator __gen) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, // "the type returned by a _Generator" __typeof__(__gen())>)
for ( ; __n > 0; --__n, ++__first) *__first = __gen(); return __first; }
/** * @brief Copy a sequence, removing elements of a given value. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) not equal to @p value * to the range beginning at @p result. * remove_copy() is stable, so the relative order of elements that are * copied is unchanged. */ template<typename _InputIterator, typename _OutputIterator, typename _Tp> _OutputIterator remove_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first) if (!(*__first == __value)) { *__result = *__first; ++__result; } return __result; }
/** * @brief Copy a sequence, removing elements for which a predicate is true. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param pred A predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) for which * @p pred returns true to the range beginning at @p result. * * remove_copy_if() is stable, so the relative order of elements that are * copied is unchanged. */ template<typename _InputIterator, typename _OutputIterator, typename _Predicate> _OutputIterator remove_copy_if(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
for ( ; __first != __last; ++__first) if (!__pred(*__first)) { *__result = *__first; ++__result; } return __result; }
/** * @brief Remove elements from a sequence. * @param first An input iterator. * @param last An input iterator. * @param value The value to be removed. * @return An iterator designating the end of the resulting sequence. * * All elements equal to @p value are removed from the range * @p [first,last). * * remove() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template<typename _ForwardIterator, typename _Tp> _ForwardIterator remove(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator>::value_type, _Tp>) __glibcxx_requires_valid_range(__first, __last);
__first = std::find(__first, __last, __value); _ForwardIterator __i = __first; return __first == __last ? __first : std::remove_copy(++__i, __last, __first, __value); }
/** * @brief Remove elements from a sequence using a predicate. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate. * @return An iterator designating the end of the resulting sequence. * * All elements for which @p pred returns true are removed from the range * @p [first,last). * * remove_if() is stable, so the relative order of elements that are * not removed is unchanged. * * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template<typename _ForwardIterator, typename _Predicate> _ForwardIterator remove_if(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
__first = std::find_if(__first, __last, __pred); _ForwardIterator __i = __first; return __first == __last ? __first : std::remove_copy_if(++__i, __last, __first, __pred); }
/** * @if maint * This is an uglified unique_copy(_InputIterator, _InputIterator, * _OutputIterator) * overloaded for forward iterators and output iterator as result. * @endif */ template<typename _ForwardIterator, typename _OutputIterator> _OutputIterator __unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, forward_iterator_tag, output_iterator_tag) { // concept requirements -- taken care of in dispatching function _ForwardIterator __next = __first; *__result = *__first; while (++__next != __last) if (!(*__first == *__next)) { __first = __next; *++__result = *__first; } return ++__result; }
/** * @if maint * This is an uglified unique_copy(_InputIterator, _InputIterator, * _OutputIterator) * overloaded for input iterators and output iterator as result. * @endif */ template<typename _InputIterator, typename _OutputIterator> _OutputIterator __unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, input_iterator_tag, output_iterator_tag) { // concept requirements -- taken care of in dispatching function typename iterator_traits<_InputIterator>::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!(__value == *__first)) { __value = *__first; *++__result = __value; } return ++__result; }
/** * @if maint * This is an uglified unique_copy(_InputIterator, _InputIterator, * _OutputIterator) * overloaded for input iterators and forward iterator as result. * @endif */ template<typename _InputIterator, typename _ForwardIterator> _ForwardIterator __unique_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, input_iterator_tag, forward_iterator_tag) { // concept requirements -- taken care of in dispatching function *__result = *__first; while (++__first != __last) if (!(*__result == *__first)) *++__result = *__first; return ++__result; }
/** * @if maint * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for forward iterators and output iterator as result. * @endif */ template<typename _ForwardIterator, typename _OutputIterator, typename _BinaryPredicate> _OutputIterator __unique_copy(_ForwardIterator __first, _ForwardIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, forward_iterator_tag, output_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>)
_ForwardIterator __next = __first; *__result = *__first; while (++__next != __last) if (!__binary_pred(*__first, *__next)) { __first = __next; *++__result = *__first; } return ++__result; }
/** * @if maint * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for input iterators and output iterator as result. * @endif */ template<typename _InputIterator, typename _OutputIterator, typename _BinaryPredicate> _OutputIterator __unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, output_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_InputIterator>::value_type>)
typename iterator_traits<_InputIterator>::value_type __value = *__first; *__result = __value; while (++__first != __last) if (!__binary_pred(__value, *__first)) { __value = *__first; *++__result = __value; } return ++__result; }
/** * @if maint * This is an uglified * unique_copy(_InputIterator, _InputIterator, _OutputIterator, * _BinaryPredicate) * overloaded for input iterators and forward iterator as result. * @endif */ template<typename _InputIterator, typename _ForwardIterator, typename _BinaryPredicate> _ForwardIterator __unique_copy(_InputIterator __first, _InputIterator __last, _ForwardIterator __result, _BinaryPredicate __binary_pred, input_iterator_tag, forward_iterator_tag) { // concept requirements -- iterators already checked __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_InputIterator>::value_type>)
*__result = *__first; while (++__first != __last) if (!__binary_pred(*__result, *__first)) *++__result = *__first; return ++__result; }
/** * @brief Copy a sequence, removing consecutive duplicate values. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements that compare equal. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 538. 241 again: Does unique_copy() require CopyConstructible and * Assignable? * @endif */ template<typename _InputIterator, typename _OutputIterator> inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, std::__iterator_category(__first), std::__iterator_category(__result)); }
/** * @brief Copy a sequence, removing consecutive values using a predicate. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Copies each element in the range @p [first,last) to the range * beginning at @p result, except that only the first element is copied * from groups of consecutive elements for which @p binary_pred returns * true. * unique_copy() is stable, so the relative order of elements that are * copied is unchanged. * * @if maint * _GLIBCXX_RESOLVE_LIB_DEFECTS * DR 241. Does unique_copy() require CopyConstructible and Assignable? * @endif */ template<typename _InputIterator, typename _OutputIterator, typename _BinaryPredicate> inline _OutputIterator unique_copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result, _BinaryPredicate __binary_pred) { // concept requirements -- predicates checked later __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return __result; return std::__unique_copy(__first, __last, __result, __binary_pred, std::__iterator_category(__first), std::__iterator_category(__result)); }
/** * @brief Remove consecutive duplicate values from a sequence. * @param first A forward iterator. * @param last A forward iterator. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values that compare equal. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template<typename _ForwardIterator> _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_EqualityComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
// Skip the beginning, if already unique. __first = std::adjacent_find(__first, __last); if (__first == __last) return __last;
// Do the real copy work. _ForwardIterator __dest = __first; ++__first; while (++__first != __last) if (!(*__dest == *__first)) *++__dest = *__first; return ++__dest; }
/** * @brief Remove consecutive values from a sequence using a predicate. * @param first A forward iterator. * @param last A forward iterator. * @param binary_pred A binary predicate. * @return An iterator designating the end of the resulting sequence. * * Removes all but the first element from each group of consecutive * values for which @p binary_pred returns true. * unique() is stable, so the relative order of elements that are * not removed is unchanged. * Elements between the end of the resulting sequence and @p last * are still present, but their value is unspecified. */ template<typename _ForwardIterator, typename _BinaryPredicate> _ForwardIterator unique(_ForwardIterator __first, _ForwardIterator __last, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
// Skip the beginning, if already unique. __first = std::adjacent_find(__first, __last, __binary_pred); if (__first == __last) return __last;
// Do the real copy work. _ForwardIterator __dest = __first; ++__first; while (++__first != __last) if (!__binary_pred(*__dest, *__first)) *++__dest = *__first; return ++__dest; }
/** * @if maint * This is an uglified reverse(_BidirectionalIterator, * _BidirectionalIterator) * overloaded for bidirectional iterators. * @endif */ template<typename _BidirectionalIterator> void __reverse(_BidirectionalIterator __first, _BidirectionalIterator __last, bidirectional_iterator_tag) { while (true) if (__first == __last || __first == --__last) return; else { std::iter_swap(__first, __last); ++__first; } }
/** * @if maint * This is an uglified reverse(_BidirectionalIterator, * _BidirectionalIterator) * overloaded for random access iterators. * @endif */ template<typename _RandomAccessIterator> void __reverse(_RandomAccessIterator __first, _RandomAccessIterator __last, random_access_iterator_tag) { if (__first == __last) return; --__last; while (__first < __last) { std::iter_swap(__first, __last); ++__first; --__last; } }
/** * @brief Reverse a sequence. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @return reverse() returns no value. * * Reverses the order of the elements in the range @p [first,last), * so that the first element becomes the last etc. * For every @c i such that @p 0<=i<=(last-first)/2), @p reverse() * swaps @p *(first+i) and @p *(last-(i+1)) */ template<typename _BidirectionalIterator> inline void reverse(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_requires_valid_range(__first, __last); std::__reverse(__first, __last, std::__iterator_category(__first)); }
/** * @brief Copy a sequence, reversing its elements. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements in the range @p [first,last) to the range * @p [result,result+(last-first)) such that the order of the * elements is reversed. * For every @c i such that @p 0<=i<=(last-first), @p reverse_copy() * performs the assignment @p *(result+(last-first)-i) = *(first+i). * The ranges @p [first,last) and @p [result,result+(last-first)) * must not overlap. */ template<typename _BidirectionalIterator, typename _OutputIterator> _OutputIterator reverse_copy(_BidirectionalIterator __first, _BidirectionalIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
while (__first != __last) { --__last; *__result = *__last; ++__result; } return __result; }
/** * @if maint * This is a helper function for the rotate algorithm specialized on RAIs. * It returns the greatest common divisor of two integer values. * @endif */ template<typename _EuclideanRingElement> _EuclideanRingElement __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n) { while (__n != 0) { _EuclideanRingElement __t = __m % __n; __m = __n; __n = __t; } return __m; }
/** * @if maint * This is a helper function for the rotate algorithm. * @endif */ template<typename _ForwardIterator> void __rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, forward_iterator_tag) { if (__first == __middle || __last == __middle) return;
_ForwardIterator __first2 = __middle; do { swap(*__first, *__first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; } while (__first2 != __last);
__first2 = __middle;
while (__first2 != __last) { swap(*__first, *__first2); ++__first; ++__first2; if (__first == __middle) __middle = __first2; else if (__first2 == __last) __first2 = __middle; } }
/** * @if maint * This is a helper function for the rotate algorithm. * @endif */ template<typename _BidirectionalIterator> void __rotate(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, bidirectional_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>)
if (__first == __middle || __last == __middle) return;
std::__reverse(__first, __middle, bidirectional_iterator_tag()); std::__reverse(__middle, __last, bidirectional_iterator_tag());
while (__first != __middle && __middle != __last) { swap(*__first, *--__last); ++__first; }
if (__first == __middle) std::__reverse(__middle, __last, bidirectional_iterator_tag()); else std::__reverse(__first, __middle, bidirectional_iterator_tag()); }
/** * @if maint * This is a helper function for the rotate algorithm. * @endif */ template<typename _RandomAccessIterator> void __rotate(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, random_access_iterator_tag) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>)
if (__first == __middle || __last == __middle) return;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance; typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
const _Distance __n = __last - __first; const _Distance __k = __middle - __first; const _Distance __l = __n - __k;
if (__k == __l) { std::swap_ranges(__first, __middle, __middle); return; }
const _Distance __d = __gcd(__n, __k);
for (_Distance __i = 0; __i < __d; __i++) { _ValueType __tmp = *__first; _RandomAccessIterator __p = __first;
if (__k < __l) { for (_Distance __j = 0; __j < __l / __d; __j++) { if (__p > __first + __l) { *__p = *(__p - __l); __p -= __l; }
*__p = *(__p + __k); __p += __k; } } else { for (_Distance __j = 0; __j < __k / __d - 1; __j ++) { if (__p < __last - __k) { *__p = *(__p + __k); __p += __k; } *__p = * (__p - __l); __p -= __l; } }
*__p = __tmp; ++__first; } }
/** * @brief Rotate the elements of a sequence. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @return Nothing. * * Rotates the elements of the range @p [first,last) by @p (middle-first) * positions so that the element at @p middle is moved to @p first, the * element at @p middle+1 is moved to @first+1 and so on for each element * in the range @p [first,last). * * This effectively swaps the ranges @p [first,middle) and * @p [middle,last). * * Performs @p *(first+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template<typename _ForwardIterator> inline void rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last);
typedef typename iterator_traits<_ForwardIterator>::iterator_category _IterType; std::__rotate(__first, __middle, __last, _IterType()); }
/** * @brief Copy a sequence, rotating its elements. * @param first A forward iterator. * @param middle A forward iterator. * @param last A forward iterator. * @param result An output iterator. * @return An iterator designating the end of the resulting sequence. * * Copies the elements of the range @p [first,last) to the range * beginning at @result, rotating the copied elements by @p (middle-first) * positions so that the element at @p middle is moved to @p result, the * element at @p middle+1 is moved to @result+1 and so on for each element * in the range @p [first,last). * * Performs @p *(result+(n+(last-middle))%(last-first))=*(first+n) for * each @p n in the range @p [0,last-first). */ template<typename _ForwardIterator, typename _OutputIterator> _OutputIterator rotate_copy(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last);
return std::copy(__first, __middle, std::copy(__middle, __last, __result)); }
/** * @brief Randomly shuffle the elements of a sequence. * @param first A forward iterator. * @param last A forward iterator. * @return Nothing. * * Reorder the elements in the range @p [first,last) using a random * distribution, so that every possible ordering of the sequence is * equally likely. */ template<typename _RandomAccessIterator> inline void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last);
if (__first != __last) for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + (std::rand() % ((__i - __first) + 1))); }
/** * @brief Shuffle the elements of a sequence using a random number * generator. * @param first A forward iterator. * @param last A forward iterator. * @param rand The RNG functor or function. * @return Nothing. * * Reorders the elements in the range @p [first,last) using @p rand to * provide a random distribution. Calling @p rand(N) for a positive * integer @p N should return a randomly chosen integer from the * range [0,N). */ template<typename _RandomAccessIterator, typename _RandomNumberGenerator> void random_shuffle(_RandomAccessIterator __first, _RandomAccessIterator __last, _RandomNumberGenerator& __rand) { // concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return; for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) std::iter_swap(__i, __first + __rand((__i - __first) + 1)); }
/** * @if maint * This is a helper function... * @endif */ template<typename _ForwardIterator, typename _Predicate> _ForwardIterator __partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, forward_iterator_tag) { if (__first == __last) return __first;
while (__pred(*__first)) if (++__first == __last) return __first;
_ForwardIterator __next = __first;
while (++__next != __last) if (__pred(*__next)) { swap(*__first, *__next); ++__first; }
return __first; }
/** * @if maint * This is a helper function... * @endif */ template<typename _BidirectionalIterator, typename _Predicate> _BidirectionalIterator __partition(_BidirectionalIterator __first, _BidirectionalIterator __last, _Predicate __pred, bidirectional_iterator_tag) { while (true) { while (true) if (__first == __last) return __first; else if (__pred(*__first)) ++__first; else break; --__last; while (true) if (__first == __last) return __first; else if (!__pred(*__last)) --__last; else break; std::iter_swap(__first, __last); ++__first; } }
/** * @brief Move elements for which a predicate is true to the beginning * of a sequence. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate functor. * @return An iterator @p middle such that @p pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * @p pred must not modify its operand. @p partition() does not preserve * the relative ordering of elements in each group, use * @p stable_partition() if this is needed. */ template<typename _ForwardIterator, typename _Predicate> inline _ForwardIterator partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
return std::__partition(__first, __last, __pred, std::__iterator_category(__first)); }
/** * @if maint * This is a helper function... * @endif */ template<typename _ForwardIterator, typename _Predicate, typename _Distance> _ForwardIterator __inplace_stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, _Distance __len) { if (__len == 1) return __pred(*__first) ? __last : __first; _ForwardIterator __middle = __first; std::advance(__middle, __len / 2); _ForwardIterator __begin = std::__inplace_stable_partition(__first, __middle, __pred, __len / 2); _ForwardIterator __end = std::__inplace_stable_partition(__middle, __last, __pred, __len - __len / 2); std::rotate(__begin, __middle, __end); std::advance(__begin, std::distance(__middle, __end)); return __begin; }
/** * @if maint * This is a helper function... * @endif */ template<typename _ForwardIterator, typename _Pointer, typename _Predicate, typename _Distance> _ForwardIterator __stable_partition_adaptive(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred, _Distance __len, _Pointer __buffer, _Distance __buffer_size) { if (__len <= __buffer_size) { _ForwardIterator __result1 = __first; _Pointer __result2 = __buffer; for ( ; __first != __last ; ++__first) if (__pred(*__first)) { *__result1 = *__first; ++__result1; } else { *__result2 = *__first; ++__result2; } std::copy(__buffer, __result2, __result1); return __result1; } else { _ForwardIterator __middle = __first; std::advance(__middle, __len / 2); _ForwardIterator __begin = std::__stable_partition_adaptive(__first, __middle, __pred, __len / 2, __buffer, __buffer_size); _ForwardIterator __end = std::__stable_partition_adaptive(__middle, __last, __pred, __len - __len / 2, __buffer, __buffer_size); std::rotate(__begin, __middle, __end); std::advance(__begin, std::distance(__middle, __end)); return __begin; } }
/** * @brief Move elements for which a predicate is true to the beginning * of a sequence, preserving relative ordering. * @param first A forward iterator. * @param last A forward iterator. * @param pred A predicate functor. * @return An iterator @p middle such that @p pred(i) is true for each * iterator @p i in the range @p [first,middle) and false for each @p i * in the range @p [middle,last). * * Performs the same function as @p partition() with the additional * guarantee that the relative ordering of elements in each group is * preserved, so any two elements @p x and @p y in the range * @p [first,last) such that @p pred(x)==pred(y) will have the same * relative ordering after calling @p stable_partition(). */ template<typename _ForwardIterator, typename _Predicate> _ForwardIterator stable_partition(_ForwardIterator __first, _ForwardIterator __last, _Predicate __pred) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_function_requires(_UnaryPredicateConcept<_Predicate, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return __first; else { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
_Temporary_buffer<_ForwardIterator, _ValueType> __buf(__first, __last); if (__buf.size() > 0) return std::__stable_partition_adaptive(__first, __last, __pred, _DistanceType(__buf.requested_size()), __buf.begin(), __buf.size()); else return std::__inplace_stable_partition(__first, __last, __pred, _DistanceType(__buf.requested_size())); } }
/** * @if maint * This is a helper function... * @endif */ template<typename _RandomAccessIterator, typename _Tp> _RandomAccessIterator __unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, _Tp __pivot) { while (true) { while (*__first < __pivot) ++__first; --__last; while (__pivot < *__last) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } }
/** * @if maint * This is a helper function... * @endif */ template<typename _RandomAccessIterator, typename _Tp, typename _Compare> _RandomAccessIterator __unguarded_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, _Tp __pivot, _Compare __comp) { while (true) { while (__comp(*__first, __pivot)) ++__first; --__last; while (__comp(__pivot, *__last)) --__last; if (!(__first < __last)) return __first; std::iter_swap(__first, __last); ++__first; } }
/** * @if maint * @doctodo * This controls some aspect of the sort routines. * @endif */ enum { _S_threshold = 16 };
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator, typename _Tp> void __unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val) { _RandomAccessIterator __next = __last; --__next; while (__val < *__next) { *__last = *__next; __last = __next; --__next; } *__last = __val; }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator, typename _Tp, typename _Compare> void __unguarded_linear_insert(_RandomAccessIterator __last, _Tp __val, _Compare __comp) { _RandomAccessIterator __next = __last; --__next; while (__comp(__val, *__next)) { *__last = *__next; __last = __next; --__next; } *__last = __val; }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator> void __insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__first == __last) return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { typename iterator_traits<_RandomAccessIterator>::value_type __val = *__i; if (__val < *__first) { std::copy_backward(__first, __i, __i + 1); *__first = __val; } else std::__unguarded_linear_insert(__i, __val); } }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator, typename _Compare> void __insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__first == __last) return;
for (_RandomAccessIterator __i = __first + 1; __i != __last; ++__i) { typename iterator_traits<_RandomAccessIterator>::value_type __val = *__i; if (__comp(__val, *__first)) { std::copy_backward(__first, __i, __i + 1); *__first = __val; } else std::__unguarded_linear_insert(__i, __val, __comp); } }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator> inline void __unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
for (_RandomAccessIterator __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i, _ValueType(*__i)); }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator, typename _Compare> inline void __unguarded_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
for (_RandomAccessIterator __i = __first; __i != __last; ++__i) std::__unguarded_linear_insert(__i, _ValueType(*__i), __comp); }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator> void __final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold)); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last); } else std::__insertion_sort(__first, __last); }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator, typename _Compare> void __final_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first > int(_S_threshold)) { std::__insertion_sort(__first, __first + int(_S_threshold), __comp); std::__unguarded_insertion_sort(__first + int(_S_threshold), __last, __comp); } else std::__insertion_sort(__first, __last, __comp); }
/** * @if maint * This is a helper function for the sort routines. * @endif */ template<typename _RandomAccessIterator> void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
std::make_heap(__first, __middle); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (*__i < *__first) std::__pop_heap(__first, __middle, __i, _ValueType(*__i)); }
/** * @if maint * This is a helper function for the sort routines. * @endif */ template<typename _RandomAccessIterator, typename _Compare> void __heap_select(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
std::make_heap(__first, __middle, __comp); for (_RandomAccessIterator __i = __middle; __i < __last; ++__i) if (__comp(*__i, *__first)) std::__pop_heap(__first, __middle, __i, _ValueType(*__i), __comp); }
/** * @if maint * This is a helper function for the sort routines. * @endif */ template<typename _Size> inline _Size __lg(_Size __n) { _Size __k; for (__k = 0; __n != 1; __n >>= 1) ++__k; return __k; }
/** * @brief Sort the smallest elements of a sequence. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @return Nothing. * * Sorts the smallest @p (middle-first) elements in the range * @p [first,last) and moves them to the range @p [first,middle). The * order of the remaining elements in the range @p [middle,last) is * undefined. * After the sort if @p i and @j are iterators in the range * @p [first,middle) such that @i precedes @j and @k is an iterator in * the range @p [middle,last) then @p *j<*i and @p *k<*i are both false. */ template<typename _RandomAccessIterator> inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last);
std::__heap_select(__first, __middle, __last); std::sort_heap(__first, __middle); }
/** * @brief Sort the smallest elements of a sequence using a predicate * for comparison. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the smallest @p (middle-first) elements in the range * @p [first,last) and moves them to the range @p [first,middle). The * order of the remaining elements in the range @p [middle,last) is * undefined. * After the sort if @p i and @j are iterators in the range * @p [first,middle) such that @i precedes @j and @k is an iterator in * the range @p [middle,last) then @p *comp(j,*i) and @p comp(*k,*i) * are both false. */ template<typename _RandomAccessIterator, typename _Compare> inline void partial_sort(_RandomAccessIterator __first, _RandomAccessIterator __middle, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __middle); __glibcxx_requires_valid_range(__middle, __last);
std::__heap_select(__first, __middle, __last, __comp); std::sort_heap(__first, __middle, __comp); }
/** * @brief Copy the smallest elements of a sequence. * @param first An iterator. * @param last Another iterator. * @param result_first A random-access iterator. * @param result_last Another random-access iterator. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [first,last) * to the range beginning at @p result_first, where the number of * elements to be copied, @p N, is the smaller of @p (last-first) and * @p (result_last-result_first). * After the sort if @p i and @j are iterators in the range * @p [result_first,result_first+N) such that @i precedes @j then * @p *j<*i is false. * The value returned is @p result_first+N. */ template<typename _InputIterator, typename _RandomAccessIterator> _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last) { typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_LessThanOpConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_LessThanComparableConcept<_OutputValueType>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_valid_range(__result_first, __result_last);
if (__result_first == __result_last) return __result_last; _RandomAccessIterator __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last); while (__first != __last) { if (*__first < *__result_first) std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first)); ++__first; } std::sort_heap(__result_first, __result_real_last); return __result_real_last; }
/** * @brief Copy the smallest elements of a sequence using a predicate for * comparison. * @param first An input iterator. * @param last Another input iterator. * @param result_first A random-access iterator. * @param result_last Another random-access iterator. * @param comp A comparison functor. * @return An iterator indicating the end of the resulting sequence. * * Copies and sorts the smallest N values from the range @p [first,last) * to the range beginning at @p result_first, where the number of * elements to be copied, @p N, is the smaller of @p (last-first) and * @p (result_last-result_first). * After the sort if @p i and @j are iterators in the range * @p [result_first,result_first+N) such that @i precedes @j then * @p comp(*j,*i) is false. * The value returned is @p result_first+N. */ template<typename _InputIterator, typename _RandomAccessIterator, typename _Compare> _RandomAccessIterator partial_sort_copy(_InputIterator __first, _InputIterator __last, _RandomAccessIterator __result_first, _RandomAccessIterator __result_last, _Compare __comp) { typedef typename iterator_traits<_InputIterator>::value_type _InputValueType; typedef typename iterator_traits<_RandomAccessIterator>::value_type _OutputValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_ConvertibleConcept<_InputValueType, _OutputValueType>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _InputValueType, _OutputValueType>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _OutputValueType, _OutputValueType>) __glibcxx_requires_valid_range(__first, __last); __glibcxx_requires_valid_range(__result_first, __result_last);
if (__result_first == __result_last) return __result_last; _RandomAccessIterator __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } std::make_heap(__result_first, __result_real_last, __comp); while (__first != __last) { if (__comp(*__first, *__result_first)) std::__adjust_heap(__result_first, _DistanceType(0), _DistanceType(__result_real_last - __result_first), _InputValueType(*__first), __comp); ++__first; } std::sort_heap(__result_first, __result_real_last, __comp); return __result_real_last; }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator, typename _Size> void __introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __depth_limit) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { std::partial_sort(__first, __last, __last); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition(__first, __last, _ValueType(std::__median(*__first, *(__first + (__last - __first) / 2), *(__last - 1)))); std::__introsort_loop(__cut, __last, __depth_limit); __last = __cut; } }
/** * @if maint * This is a helper function for the sort routine. * @endif */ template<typename _RandomAccessIterator, typename _Size, typename _Compare> void __introsort_loop(_RandomAccessIterator __first, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
while (__last - __first > int(_S_threshold)) { if (__depth_limit == 0) { std::partial_sort(__first, __last, __last, __comp); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition(__first, __last, _ValueType(std::__median(*__first, *(__first + (__last - __first) / 2), *(__last - 1), __comp)), __comp); std::__introsort_loop(__cut, __last, __depth_limit, __comp); __last = __cut; } }
/** * @brief Sort the elements of a sequence. * @param first An iterator. * @param last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p *(i+1)<*i is false for each iterator @p i in the range * @p [first,last-1). * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template<typename _RandomAccessIterator> inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __last);
if (__first != __last) { std::__introsort_loop(__first, __last, std::__lg(__last - __first) * 2); std::__final_insertion_sort(__first, __last); } }
/** * @brief Sort the elements of a sequence using a predicate for comparison. * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p comp(*(i+1),*i) is false for every iterator @p i in the * range @p [first,last-1). * * The relative ordering of equivalent elements is not preserved, use * @p stable_sort() if this is needed. */ template<typename _RandomAccessIterator, typename _Compare> inline void sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __last);
if (__first != __last) { std::__introsort_loop(__first, __last, std::__lg(__last - __first) * 2, __comp); std::__final_insertion_sort(__first, __last, __comp); } }
/** * @brief Finds the first position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An iterator pointing to the first element "not less than" @a val, * or end() if every element is less than @a val. * @ingroup binarysearch */ template<typename _ForwardIterator, typename _Tp> _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType, _Tp>) __glibcxx_requires_partitioned(__first, __last, __val);
_DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle;
while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; }
/** * @brief Finds the first position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element "not less than" @a val, * or end() if every element is less than @a val. * @ingroup binarysearch * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> _ForwardIterator lower_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _Tp>) __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
_DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle;
while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; }
/** * @brief Finds the last position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An iterator pointing to the first element greater than @a val, * or end() if no elements are greater than @a val. * @ingroup binarysearch */ template<typename _ForwardIterator, typename _Tp> _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>) __glibcxx_requires_partitioned(__first, __last, __val);
_DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle;
while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__val < *__middle) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; }
/** * @brief Finds the last position in which @a val could be inserted * without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element greater than @a val, * or end() if no elements are greater than @a val. * @ingroup binarysearch * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> _ForwardIterator upper_bound(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>) __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
_DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle;
while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__comp(__val, *__middle)) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; }
/** * @if maint * This is a helper function for the merge routines. * @endif */ template<typename _BidirectionalIterator, typename _Distance> void __merge_without_buffer(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (*__middle < *__first) std::iter_swap(__first, __middle); return; } _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _BidirectionalIterator __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22); }
/** * @if maint * This is a helper function for the merge routines. * @endif */ template<typename _BidirectionalIterator, typename _Distance, typename _Compare> void __merge_without_buffer(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Compare __comp) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (__comp(*__middle, *__first)) std::iter_swap(__first, __middle); return; } _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp); __len11 = std::distance(__first, __first_cut); } std::rotate(__first_cut, __middle, __second_cut); _BidirectionalIterator __new_middle = __first_cut; std::advance(__new_middle, std::distance(__middle, __second_cut)); std::__merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22, __comp); std::__merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __comp); }
/** * @if maint * This is a helper function for the stable sorting routines. * @endif */ template<typename _RandomAccessIterator> void __inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { if (__last - __first < 15) { std::__insertion_sort(__first, __last); return; } _RandomAccessIterator __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle); std::__inplace_stable_sort(__middle, __last); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle); }
/** * @if maint * This is a helper function for the stable sorting routines. * @endif */ template<typename _RandomAccessIterator, typename _Compare> void __inplace_stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { if (__last - __first < 15) { std::__insertion_sort(__first, __last, __comp); return; } _RandomAccessIterator __middle = __first + (__last - __first) / 2; std::__inplace_stable_sort(__first, __middle, __comp); std::__inplace_stable_sort(__middle, __last, __comp); std::__merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle, __comp); }
/** * @brief Merges two sorted ranges. * @param first1 An iterator. * @param first2 Another iterator. * @param last1 Another iterator. * @param last2 Another iterator. * @param result An iterator pointing to the end of the merged range. * @return An iterator pointing to the first element "not less than" @a val. * * Merges the ranges [first1,last1) and [first2,last2) into the sorted range * [result, result + (last1-first1) + (last2-first2)). Both input ranges * must be sorted, and the output range must not overlap with either of * the input ranges. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2);
while (__first1 != __last1 && __first2 != __last2) { if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); }
/** * @brief Merges two sorted ranges. * @param first1 An iterator. * @param first2 Another iterator. * @param last1 Another iterator. * @param last2 Another iterator. * @param result An iterator pointing to the end of the merged range. * @param comp A functor to use for comparisons. * @return An iterator pointing to the first element "not less than" @a val. * * Merges the ranges [first1,last1) and [first2,last2) into the sorted range * [result, result + (last1-first1) + (last2-first2)). Both input ranges * must be sorted, and the output range must not overlap with either of * the input ranges. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator merge(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); }
template<typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Distance> void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size) { const _Distance __two_step = 2 * __step_size;
while (__last - __first >= __two_step) { __result = std::merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result); __first += __two_step; }
__step_size = std::min(_Distance(__last - __first), __step_size); std::merge(__first, __first + __step_size, __first + __step_size, __last, __result); }
template<typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Distance, typename _Compare> void __merge_sort_loop(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __result, _Distance __step_size, _Compare __comp) { const _Distance __two_step = 2 * __step_size;
while (__last - __first >= __two_step) { __result = std::merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result, __comp); __first += __two_step; } __step_size = std::min(_Distance(__last - __first), __step_size);
std::merge(__first, __first + __step_size, __first + __step_size, __last, __result, __comp); }
enum { _S_chunk_size = 7 };
template<typename _RandomAccessIterator, typename _Distance> void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size); __first += __chunk_size; } std::__insertion_sort(__first, __last); }
template<typename _RandomAccessIterator, typename _Distance, typename _Compare> void __chunk_insertion_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Distance __chunk_size, _Compare __comp) { while (__last - __first >= __chunk_size) { std::__insertion_sort(__first, __first + __chunk_size, __comp); __first += __chunk_size; } std::__insertion_sort(__first, __last, __comp); }
template<typename _RandomAccessIterator, typename _Pointer> void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance;
const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len;
_Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size);
while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size); __step_size *= 2; } }
template<typename _RandomAccessIterator, typename _Pointer, typename _Compare> void __merge_sort_with_buffer(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::difference_type _Distance;
const _Distance __len = __last - __first; const _Pointer __buffer_last = __buffer + __len;
_Distance __step_size = _S_chunk_size; std::__chunk_insertion_sort(__first, __last, __step_size, __comp);
while (__step_size < __len) { std::__merge_sort_loop(__first, __last, __buffer, __step_size, __comp); __step_size *= 2; std::__merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp); __step_size *= 2; } }
/** * @if maint * This is a helper function for the merge routines. * @endif */ template<typename _BidirectionalIterator1, typename _BidirectionalIterator2, typename _BidirectionalIterator3> _BidirectionalIterator3 __merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result) { if (__first1 == __last1) return std::copy_backward(__first2, __last2, __result); if (__first2 == __last2) return std::copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (*__last2 < *__last1) { *--__result = *__last1; if (__first1 == __last1) return std::copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return std::copy_backward(__first1, ++__last1, __result); --__last2; } } }
/** * @if maint * This is a helper function for the merge routines. * @endif */ template<typename _BidirectionalIterator1, typename _BidirectionalIterator2, typename _BidirectionalIterator3, typename _Compare> _BidirectionalIterator3 __merge_backward(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, _BidirectionalIterator3 __result, _Compare __comp) { if (__first1 == __last1) return std::copy_backward(__first2, __last2, __result); if (__first2 == __last2) return std::copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (__comp(*__last2, *__last1)) { *--__result = *__last1; if (__first1 == __last1) return std::copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return std::copy_backward(__first1, ++__last1, __result); --__last2; } } }
/** * @if maint * This is a helper function for the merge routines. * @endif */ template<typename _BidirectionalIterator1, typename _BidirectionalIterator2, typename _Distance> _BidirectionalIterator1 __rotate_adaptive(_BidirectionalIterator1 __first, _BidirectionalIterator1 __middle, _BidirectionalIterator1 __last, _Distance __len1, _Distance __len2, _BidirectionalIterator2 __buffer, _Distance __buffer_size) { _BidirectionalIterator2 __buffer_end; if (__len1 > __len2 && __len2 <= __buffer_size) { __buffer_end = std::copy(__middle, __last, __buffer); std::copy_backward(__first, __middle, __last); return std::copy(__buffer, __buffer_end, __first); } else if (__len1 <= __buffer_size) { __buffer_end = std::copy(__first, __middle, __buffer); std::copy(__middle, __last, __first); return std::copy_backward(__buffer, __buffer_end, __last); } else { std::rotate(__first, __middle, __last); std::advance(__first, std::distance(__middle, __last)); return __first; } }
/** * @if maint * This is a helper function for the merge routines. * @endif */ template<typename _BidirectionalIterator, typename _Distance, typename _Pointer> void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = std::copy(__first, __middle, __buffer); std::merge(__buffer, __buffer_end, __middle, __last, __first); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = std::copy(__middle, __last, __buffer); std::__merge_backward(__first, __middle, __buffer, __buffer_end, __last); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size); } }
/** * @if maint * This is a helper function for the merge routines. * @endif */ template<typename _BidirectionalIterator, typename _Distance, typename _Pointer, typename _Compare> void __merge_adaptive(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = std::copy(__first, __middle, __buffer); std::merge(__buffer, __buffer_end, __middle, __last, __first, __comp); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = std::copy(__middle, __last, __buffer); std::__merge_backward(__first, __middle, __buffer, __buffer_end, __last, __comp); } else { _BidirectionalIterator __first_cut = __first; _BidirectionalIterator __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; std::advance(__first_cut, __len11); __second_cut = std::lower_bound(__middle, __last, *__first_cut, __comp); __len22 = std::distance(__middle, __second_cut); } else { __len22 = __len2 / 2; std::advance(__second_cut, __len22); __first_cut = std::upper_bound(__first, __middle, *__second_cut, __comp); __len11 = std::distance(__first, __first_cut); } _BidirectionalIterator __new_middle = std::__rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); std::__merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size, __comp); std::__merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size, __comp); } }
/** * @brief Merges two sorted ranges in place. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @return Nothing. * * Merges two sorted and consecutive ranges, [first,middle) and * [middle,last), and puts the result in [first,last). The output will * be sorted. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * If enough additional memory is available, this takes (last-first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(first,last). */ template<typename _BidirectionalIterator> void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last) { typedef typename iterator_traits<_BidirectionalIterator>::value_type _ValueType; typedef typename iterator_traits<_BidirectionalIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_sorted(__first, __middle); __glibcxx_requires_sorted(__middle, __last);
if (__first == __middle || __middle == __last) return;
_DistanceType __len1 = std::distance(__first, __middle); _DistanceType __len2 = std::distance(__middle, __last);
_Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size())); }
/** * @brief Merges two sorted ranges in place. * @param first An iterator. * @param middle Another iterator. * @param last Another iterator. * @param comp A functor to use for comparisons. * @return Nothing. * * Merges two sorted and consecutive ranges, [first,middle) and * [middle,last), and puts the result in [first,last). The output will * be sorted. The sort is @e stable, that is, for equivalent * elements in the two ranges, elements from the first range will always * come before elements from the second. * * If enough additional memory is available, this takes (last-first)-1 * comparisons. Otherwise an NlogN algorithm is used, where N is * distance(first,last). * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _BidirectionalIterator, typename _Compare> void inplace_merge(_BidirectionalIterator __first, _BidirectionalIterator __middle, _BidirectionalIterator __last, _Compare __comp) { typedef typename iterator_traits<_BidirectionalIterator>::value_type _ValueType; typedef typename iterator_traits<_BidirectionalIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_sorted_pred(__first, __middle, __comp); __glibcxx_requires_sorted_pred(__middle, __last, __comp);
if (__first == __middle || __middle == __last) return;
const _DistanceType __len1 = std::distance(__first, __middle); const _DistanceType __len2 = std::distance(__middle, __last);
_Temporary_buffer<_BidirectionalIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__merge_without_buffer(__first, __middle, __last, __len1, __len2, __comp); else std::__merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _DistanceType(__buf.size()), __comp); }
template<typename _RandomAccessIterator, typename _Pointer, typename _Distance> void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer); std::__merge_sort_with_buffer(__middle, __last, __buffer); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size); }
template<typename _RandomAccessIterator, typename _Pointer, typename _Distance, typename _Compare> void __stable_sort_adaptive(_RandomAccessIterator __first, _RandomAccessIterator __last, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { const _Distance __len = (__last - __first + 1) / 2; const _RandomAccessIterator __middle = __first + __len; if (__len > __buffer_size) { std::__stable_sort_adaptive(__first, __middle, __buffer, __buffer_size, __comp); std::__stable_sort_adaptive(__middle, __last, __buffer, __buffer_size, __comp); } else { std::__merge_sort_with_buffer(__first, __middle, __buffer, __comp); std::__merge_sort_with_buffer(__middle, __last, __buffer, __comp); } std::__merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size, __comp); }
/** * @brief Sort the elements of a sequence, preserving the relative order * of equivalent elements. * @param first An iterator. * @param last Another iterator. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p *(i+1)<*i is false for each iterator @p i in the range * @p [first,last-1). * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [first,last) such that * @p x<y is false and @p y<x is false will have the same relative * ordering after calling @p stable_sort(). */ template<typename _RandomAccessIterator> inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __last);
_Temporary_buffer<_RandomAccessIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size())); }
/** * @brief Sort the elements of a sequence using a predicate for comparison, * preserving the relative order of equivalent elements. * @param first An iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Sorts the elements in the range @p [first,last) in ascending order, * such that @p comp(*(i+1),*i) is false for each iterator @p i in the * range @p [first,last-1). * * The relative ordering of equivalent elements is preserved, so any two * elements @p x and @p y in the range @p [first,last) such that * @p comp(x,y) is false and @p comp(y,x) is false will have the same * relative ordering after calling @p stable_sort(). */ template<typename _RandomAccessIterator, typename _Compare> inline void stable_sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType; typedef typename iterator_traits<_RandomAccessIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __last);
_Temporary_buffer<_RandomAccessIterator, _ValueType> __buf(__first, __last); if (__buf.begin() == 0) std::__inplace_stable_sort(__first, __last, __comp); else std::__stable_sort_adaptive(__first, __last, __buf.begin(), _DistanceType(__buf.size()), __comp); }
template<typename _RandomAccessIterator, typename _Size> void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last); // Place the nth largest element in its final position. std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition(__first, __last, _ValueType(std::__median(*__first, *(__first + (__last - __first) / 2), *(__last - 1)))); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last); }
template<typename _RandomAccessIterator, typename _Size, typename _Compare> void __introselect(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Size __depth_limit, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
while (__last - __first > 3) { if (__depth_limit == 0) { std::__heap_select(__first, __nth + 1, __last, __comp); // Place the nth largest element in its final position. std::iter_swap(__first, __nth); return; } --__depth_limit; _RandomAccessIterator __cut = std::__unguarded_partition(__first, __last, _ValueType(std::__median(*__first, *(__first + (__last - __first) / 2), *(__last - 1), __comp)), __comp); if (__cut <= __nth) __first = __cut; else __last = __cut; } std::__insertion_sort(__first, __last, __comp); }
/** * @brief Sort a sequence just enough to find a particular position. * @param first An iterator. * @param nth Another iterator. * @param last Another iterator. * @return Nothing. * * Rearranges the elements in the range @p [first,last) so that @p *nth * is the same element that would have been in that position had the * whole sequence been sorted. * whole sequence been sorted. The elements either side of @p *nth are * not completely sorted, but for any iterator @i in the range * @p [first,nth) and any iterator @j in the range @p [nth,last) it * holds that @p *j<*i is false. */ template<typename _RandomAccessIterator> inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_LessThanComparableConcept<_ValueType>) __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last);
if (__first == __last || __nth == __last) return;
std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2); }
/** * @brief Sort a sequence just enough to find a particular position * using a predicate for comparison. * @param first An iterator. * @param nth Another iterator. * @param last Another iterator. * @param comp A comparison functor. * @return Nothing. * * Rearranges the elements in the range @p [first,last) so that @p *nth * is the same element that would have been in that position had the * whole sequence been sorted. The elements either side of @p *nth are * not completely sorted, but for any iterator @i in the range * @p [first,nth) and any iterator @j in the range @p [nth,last) it * holds that @p comp(*j,*i) is false. */ template<typename _RandomAccessIterator, typename _Compare> inline void nth_element(_RandomAccessIterator __first, _RandomAccessIterator __nth, _RandomAccessIterator __last, _Compare __comp) { typedef typename iterator_traits<_RandomAccessIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_Mutable_RandomAccessIteratorConcept< _RandomAccessIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _ValueType>) __glibcxx_requires_valid_range(__first, __nth); __glibcxx_requires_valid_range(__nth, __last);
if (__first == __last || __nth == __last) return;
std::__introselect(__first, __nth, __last, std::__lg(__last - __first) * 2, __comp); }
/** * @brief Finds the largest subrange in which @a val could be inserted * at any place in it without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return An pair of iterators defining the subrange. * @ingroup binarysearch * * This is equivalent to * @code * std::make_pair(lower_bound(first, last, val), * upper_bound(first, last, val)) * @endcode * but does not actually call those functions. */ template<typename _ForwardIterator, typename _Tp> pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType, _Tp>) __glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>) __glibcxx_requires_partitioned(__first, __last, __val);
_DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle, __left, __right;
while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__val < *__middle) __len = __half; else { __left = std::lower_bound(__first, __middle, __val); std::advance(__first, __len); __right = std::upper_bound(++__middle, __first, __val); return pair<_ForwardIterator, _ForwardIterator>(__left, __right); } } return pair<_ForwardIterator, _ForwardIterator>(__first, __first); }
/** * @brief Finds the largest subrange in which @a val could be inserted * at any place in it without changing the ordering. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return An pair of iterators defining the subrange. * @ingroup binarysearch * * This is equivalent to * @code * std::make_pair(lower_bound(first, last, val, comp), * upper_bound(first, last, val, comp)) * @endcode * but does not actually call those functions. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> pair<_ForwardIterator, _ForwardIterator> equal_range(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType; typedef typename iterator_traits<_ForwardIterator>::difference_type _DistanceType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType, _Tp>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>) __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
_DistanceType __len = std::distance(__first, __last); _DistanceType __half; _ForwardIterator __middle, __left, __right;
while (__len > 0) { __half = __len >> 1; __middle = __first; std::advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__comp(__val, *__middle)) __len = __half; else { __left = std::lower_bound(__first, __middle, __val, __comp); std::advance(__first, __len); __right = std::upper_bound(++__middle, __first, __val, __comp); return pair<_ForwardIterator, _ForwardIterator>(__left, __right); } } return pair<_ForwardIterator, _ForwardIterator>(__first, __first); }
/** * @brief Determines whether an element exists in a range. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @return True if @a val (or its equivelent) is in [@a first,@a last ]. * @ingroup binarysearch * * Note that this does not actually return an iterator to @a val. For * that, use std::find or a container's specialized find member functions. */ template<typename _ForwardIterator, typename _Tp> bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanOpConcept<_Tp, _ValueType>) __glibcxx_requires_partitioned(__first, __last, __val);
_ForwardIterator __i = std::lower_bound(__first, __last, __val); return __i != __last && !(__val < *__i); }
/** * @brief Determines whether an element exists in a range. * @param first An iterator. * @param last Another iterator. * @param val The search term. * @param comp A functor to use for comparisons. * @return True if @a val (or its equivelent) is in [@a first,@a last ]. * @ingroup binarysearch * * Note that this does not actually return an iterator to @a val. For * that, use std::find or a container's specialized find member functions. * * The comparison function should have the same effects on ordering as * the function used for the initial sort. */ template<typename _ForwardIterator, typename _Tp, typename _Compare> bool binary_search(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __val, _Compare __comp) { typedef typename iterator_traits<_ForwardIterator>::value_type _ValueType;
// concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _Tp, _ValueType>) __glibcxx_requires_partitioned_pred(__first, __last, __val, __comp);
_ForwardIterator __i = std::lower_bound(__first, __last, __val, __comp); return __i != __last && !__comp(__val, *__i); }
// Set algorithms: includes, set_union, set_intersection, set_difference, // set_symmetric_difference. All of these algorithms have the precondition // that their input ranges are sorted and the postcondition that their output // ranges are sorted.
/** * @brief Determines whether all elements of a sequence exists in a range. * @param first1 Start of search range. * @param last1 End of search range. * @param first2 Start of sequence * @param last2 End of sequence. * @return True if each element in [first2,last2) is contained in order * within [first1,last1). False otherwise. * @ingroup setoperations * * This operation expects both [first1,last1) and [first2,last2) to be * sorted. Searches for the presence of each element in [first2,last2) * within [first1,last1). The iterators over each range only move forward, * so this is a linear algorithm. If an element in [first2,last2) is not * found before the search iterator reaches @a last2, false is returned. */ template<typename _InputIterator1, typename _InputIterator2> bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2);
while (__first1 != __last1 && __first2 != __last2) if (*__first2 < *__first1) return false; else if(*__first1 < *__first2) ++__first1; else ++__first1, ++__first2;
return __first2 == __last2; }
/** * @brief Determines whether all elements of a sequence exists in a range * using comparison. * @param first1 Start of search range. * @param last1 End of search range. * @param first2 Start of sequence * @param last2 End of sequence. * @param comp Comparison function to use. * @return True if each element in [first2,last2) is contained in order * within [first1,last1) according to comp. False otherwise. * @ingroup setoperations * * This operation expects both [first1,last1) and [first2,last2) to be * sorted. Searches for the presence of each element in [first2,last2) * within [first1,last1), using comp to decide. The iterators over each * range only move forward, so this is a linear algorithm. If an element * in [first2,last2) is not found before the search iterator reaches @a * last2, false is returned. */ template<typename _InputIterator1, typename _InputIterator2, typename _Compare> bool includes(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first2, *__first1)) return false; else if(__comp(*__first1, *__first2)) ++__first1; else ++__first1, ++__first2;
return __first2 == __last2; }
/** * @brief Return the union of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that element is copied and the iterator advanced. If an element is * contained in both ranges, the element from the first range is copied and * both ranges advance. The output range may not overlap either input * range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2);
while (__first1 != __last1 && __first2 != __last2) { if (*__first1 < *__first2) { *__result = *__first1; ++__first1; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); }
/** * @brief Return the union of two sorted ranges using a comparison functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * each range in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @a comp, that element is copied and the iterator advanced. * If an equivalent element according to @a comp is contained in both * ranges, the element from the first range is copied and both ranges * advance. The output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator set_union(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); }
/** * @brief Return the intersection of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other, * that iterator advances. If an element is contained in both ranges, the * element from the first range is copied and both ranges advance. The * output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2);
while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) ++__first1; else if (*__first2 < *__first1) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; }
/** * @brief Return the intersection of two sorted ranges using comparison * functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * both ranges in order to the output range. Iterators increment for each * range. When the current element of one range is less than the other * according to @a comp, that iterator advances. If an element is * contained in both ranges according to @a comp, the element from the * first range is copied and both ranges advance. The output range may not * overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator set_intersection(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) ++__first1; else if (__comp(*__first2, *__first1)) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; }
/** * @brief Return the difference of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second, that element is copied and the * iterator advances. If the current element of the second range is less, * the iterator advances, but no element is copied. If an element is * contained in both ranges, no elements are copied and both ranges * advance. The output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2);
while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); }
/** * @brief Return the difference of two sorted ranges using comparison * functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * the first range but not the second in order to the output range. * Iterators increment for each range. When the current element of the * first range is less than the second according to @a comp, that element * is copied and the iterator advances. If the current element of the * second range is less, no element is copied and the iterator advances. * If an element is contained in both ranges according to @a comp, no * elements are copied and both ranges advance. The output range may not * overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator set_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) ++__first2; else { ++__first1; ++__first2; } return std::copy(__first1, __last1, __result); }
/** * @brief Return the symmetric difference of two sorted ranges. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other, that element is copied and the iterator advances. If an * element is contained in both ranges, no elements are copied and both * ranges advance. The output range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator> _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_LessThanOpConcept<_ValueType2, _ValueType1>) __glibcxx_requires_sorted(__first1, __last1); __glibcxx_requires_sorted(__first2, __last2);
while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); }
/** * @brief Return the symmetric difference of two sorted ranges using * comparison functor. * @param first1 Start of first range. * @param last1 End of first range. * @param first2 Start of second range. * @param last2 End of second range. * @param comp The comparison functor. * @return End of the output range. * @ingroup setoperations * * This operation iterates over both ranges, copying elements present in * one range but not the other in order to the output range. Iterators * increment for each range. When the current element of one range is less * than the other according to @a comp, that element is copied and the * iterator advances. If an element is contained in both ranges according * to @a comp, no elements are copied and both ranges advance. The output * range may not overlap either input range. */ template<typename _InputIterator1, typename _InputIterator2, typename _OutputIterator, typename _Compare> _OutputIterator set_symmetric_difference(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _OutputIterator __result, _Compare __comp) { typedef typename iterator_traits<_InputIterator1>::value_type _ValueType1; typedef typename iterator_traits<_InputIterator2>::value_type _ValueType2;
// concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType1>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType1, _ValueType2>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, _ValueType2, _ValueType1>) __glibcxx_requires_sorted_pred(__first1, __last1, __comp); __glibcxx_requires_sorted_pred(__first2, __last2, __comp);
while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return std::copy(__first2, __last2, std::copy(__first1, __last1, __result)); }
// min_element and max_element, with and without an explicitly supplied // comparison function.
/** * @brief Return the maximum element in a range. * @param first Start of range. * @param last End of range. * @return Iterator referencing the first instance of the largest value. */ template<typename _ForwardIterator> _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (*__result < *__first) __result = __first; return __result; }
/** * @brief Return the maximum element in a range using comparison functor. * @param first Start of range. * @param last End of range. * @param comp Comparison functor. * @return Iterator referencing the first instance of the largest value * according to comp. */ template<typename _ForwardIterator, typename _Compare> _ForwardIterator max_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(*__result, *__first)) __result = __first; return __result; }
/** * @brief Return the minimum element in a range. * @param first Start of range. * @param last End of range. * @return Iterator referencing the first instance of the smallest value. */ template<typename _ForwardIterator> _ForwardIterator min_element(_ForwardIterator __first, _ForwardIterator __last) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (*__first < *__result) __result = __first; return __result; }
/** * @brief Return the minimum element in a range using comparison functor. * @param first Start of range. * @param last End of range. * @param comp Comparison functor. * @return Iterator referencing the first instance of the smallest value * according to comp. */ template<typename _ForwardIterator, typename _Compare> _ForwardIterator min_element(_ForwardIterator __first, _ForwardIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_ForwardIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return __first; _ForwardIterator __result = __first; while (++__first != __last) if (__comp(*__first, *__result)) __result = __first; return __result; }
// next_permutation and prev_permutation, with and without an explicitly // supplied comparison function.
/** * @brief Permute range into the next "dictionary" ordering. * @param first Start of range. * @param last End of range. * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range as a set of "dictionary" sorted * sequences. Permutes the current sequence into the next one of this set. * Returns true if there are more sequences to generate. If the sequence * is the largest of the set, the smallest is generated and false returned. */ template<typename _BidirectionalIterator> bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i;
for(;;) { _BidirectionalIterator __ii = __i; --__i; if (*__i < *__ii) { _BidirectionalIterator __j = __last; while (!(*__i < *--__j)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } }
/** * @brief Permute range into the next "dictionary" ordering using * comparison functor. * @param first Start of range. * @param last End of range. * @param comp * @return False if wrapped to first permutation, true otherwise. * * Treats all permutations of the range [first,last) as a set of * "dictionary" sorted sequences ordered by @a comp. Permutes the current * sequence into the next one of this set. Returns true if there are more * sequences to generate. If the sequence is the largest of the set, the * smallest is generated and false returned. */ template<typename _BidirectionalIterator, typename _Compare> bool next_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_BidirectionalIterator>::value_type, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i;
for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(*__i, *__ii)) { _BidirectionalIterator __j = __last; while (!__comp(*__i, *--__j)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } }
/** * @brief Permute range into the previous "dictionary" ordering. * @param first Start of range. * @param last End of range. * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range as a set of "dictionary" sorted * sequences. Permutes the current sequence into the previous one of this * set. Returns true if there are more sequences to generate. If the * sequence is the smallest of the set, the largest is generated and false * returned. */ template<typename _BidirectionalIterator> bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_LessThanComparableConcept< typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i;
for(;;) { _BidirectionalIterator __ii = __i; --__i; if (*__ii < *__i) { _BidirectionalIterator __j = __last; while (!(*--__j < *__i)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } }
/** * @brief Permute range into the previous "dictionary" ordering using * comparison functor. * @param first Start of range. * @param last End of range. * @param comp * @return False if wrapped to last permutation, true otherwise. * * Treats all permutations of the range [first,last) as a set of * "dictionary" sorted sequences ordered by @a comp. Permutes the current * sequence into the previous one of this set. Returns true if there are * more sequences to generate. If the sequence is the smallest of the set, * the largest is generated and false returned. */ template<typename _BidirectionalIterator, typename _Compare> bool prev_permutation(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_Compare, typename iterator_traits<_BidirectionalIterator>::value_type, typename iterator_traits<_BidirectionalIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last);
if (__first == __last) return false; _BidirectionalIterator __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i;
for(;;) { _BidirectionalIterator __ii = __i; --__i; if (__comp(*__ii, *__i)) { _BidirectionalIterator __j = __last; while (!__comp(*--__j, *__i)) {} std::iter_swap(__i, __j); std::reverse(__ii, __last); return true; } if (__i == __first) { std::reverse(__first, __last); return false; } } }
// find_first_of, with and without an explicitly supplied comparison function.
/** * @brief Find element from a set in a sequence. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of match candidates. * @param last2 End of match candidates. * @return The first iterator @c i in the range * @p [first1,last1) such that @c *i == @p *(i2) such that i2 is an * interator in [first2,last2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for an element that is equal to * some element in the range [first2,last2). If found, returns an iterator * in the range [first1,last1), otherwise returns @p last1. */ template<typename _InputIterator, typename _ForwardIterator> _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
for ( ; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (*__first1 == *__iter) return __first1; return __last1; }
/** * @brief Find element from a set in a sequence using a predicate. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of match candidates. * @param last2 End of match candidates. * @param comp Predicate to use. * @return The first iterator @c i in the range * @p [first1,last1) such that @c comp(*i, @p *(i2)) is true and i2 is an * interator in [first2,last2), or @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for an element that is equal to * some element in the range [first2,last2). If found, returns an iterator in * the range [first1,last1), otherwise returns @p last1. */ template<typename _InputIterator, typename _ForwardIterator, typename _BinaryPredicate> _InputIterator find_first_of(_InputIterator __first1, _InputIterator __last1, _ForwardIterator __first2, _ForwardIterator __last2, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_InputIterator>::value_type, typename iterator_traits<_ForwardIterator>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
for ( ; __first1 != __last1; ++__first1) for (_ForwardIterator __iter = __first2; __iter != __last2; ++__iter) if (__comp(*__first1, *__iter)) return __first1; return __last1; }
// find_end, with and without an explicitly supplied comparison function. // Search [first2, last2) as a subsequence in [first1, last1), and return // the *last* possible match. Note that find_end for bidirectional iterators // is much faster than for forward iterators.
// find_end for forward iterators. template<typename _ForwardIterator1, typename _ForwardIterator2> _ForwardIterator1 __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, forward_iterator_tag, forward_iterator_tag) { if (__first2 == __last2) return __last1; else { _ForwardIterator1 __result = __last1; while (1) { _ForwardIterator1 __new_result = std::search(__first1, __last1, __first2, __last2); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } }
template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> _ForwardIterator1 __find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, forward_iterator_tag, forward_iterator_tag, _BinaryPredicate __comp) { if (__first2 == __last2) return __last1; else { _ForwardIterator1 __result = __last1; while (1) { _ForwardIterator1 __new_result = std::search(__first1, __last1, __first2, __last2, __comp); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } }
// find_end for bidirectional iterators. Requires partial specialization. template<typename _BidirectionalIterator1, typename _BidirectionalIterator2> _BidirectionalIterator1 __find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator1>) __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator2>)
typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1; typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
_RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2);
if (__rresult == __rlast1) return __last1; else { _BidirectionalIterator1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } }
template<typename _BidirectionalIterator1, typename _BidirectionalIterator2, typename _BinaryPredicate> _BidirectionalIterator1 __find_end(_BidirectionalIterator1 __first1, _BidirectionalIterator1 __last1, _BidirectionalIterator2 __first2, _BidirectionalIterator2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator1>) __glibcxx_function_requires(_BidirectionalIteratorConcept< _BidirectionalIterator2>)
typedef reverse_iterator<_BidirectionalIterator1> _RevIterator1; typedef reverse_iterator<_BidirectionalIterator2> _RevIterator2;
_RevIterator1 __rlast1(__first1); _RevIterator2 __rlast2(__first2); _RevIterator1 __rresult = std::search(_RevIterator1(__last1), __rlast1, _RevIterator2(__last2), __rlast2, __comp);
if (__rresult == __rlast1) return __last1; else { _BidirectionalIterator1 __result = __rresult.base(); std::advance(__result, -std::distance(__first2, __last2)); return __result; } }
// Dispatching functions for find_end.
/** * @brief Find last matching subsequence in a sequence. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c *(i+N) == @p *(first2+N) * for each @c N in the range @p [0,last2-first2), or @p last1 if no * such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) and * returns an iterator to the first element of the sub-sequence, or * @p last1 if the sub-sequence is not found. The sub-sequence will be the * last such subsequence contained in [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template<typename _ForwardIterator1, typename _ForwardIterator2> inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2)); }
/** * @brief Find last matching subsequence in a sequence using a predicate. * @param first1 Start of range to search. * @param last1 End of range to search. * @param first2 Start of sequence to match. * @param last2 End of sequence to match. * @param comp The predicate to use. * @return The last iterator @c i in the range * @p [first1,last1-(last2-first2)) such that @c predicate(*(i+N), @p * (first2+N)) is true for each @c N in the range @p [0,last2-first2), or * @p last1 if no such iterator exists. * * Searches the range @p [first1,last1) for a sub-sequence that compares * equal value-by-value with the sequence given by @p [first2,last2) using * comp as a predicate and returns an iterator to the first element of the * sub-sequence, or @p last1 if the sub-sequence is not found. The * sub-sequence will be the last such subsequence contained in * [first,last1). * * Because the sub-sequence must lie completely within the range * @p [first1,last1) it must start at a position less than * @p last1-(last2-first2) where @p last2-first2 is the length of the * sub-sequence. * This means that the returned iterator @c i will be in the range * @p [first1,last1-(last2-first2)) */ template<typename _ForwardIterator1, typename _ForwardIterator2, typename _BinaryPredicate> inline _ForwardIterator1 find_end(_ForwardIterator1 __first1, _ForwardIterator1 __last1, _ForwardIterator2 __first2, _ForwardIterator2 __last2, _BinaryPredicate __comp) { // concept requirements __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator1>) __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator2>) __glibcxx_function_requires(_BinaryPredicateConcept<_BinaryPredicate, typename iterator_traits<_ForwardIterator1>::value_type, typename iterator_traits<_ForwardIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2);
return std::__find_end(__first1, __last1, __first2, __last2, std::__iterator_category(__first1), std::__iterator_category(__first2), __comp); }
_GLIBCXX_END_NAMESPACE
#endif /* _ALGO_H */
|