Viewing file: valarray_before.h (18.11 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// The template and inlines for the -*- C++ -*- internal _Meta class.
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version.
// This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA.
// As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License.
/** @file valarray_before.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@cmla.ens-cachan.fr>
#ifndef _VALARRAY_BEFORE_H #define _VALARRAY_BEFORE_H 1
#pragma GCC system_header
#include <bits/slice_array.h>
_GLIBCXX_BEGIN_NAMESPACE(std)
// // Implementing a loosened valarray return value is tricky. // First we need to meet 26.3.1/3: we should not add more than // two levels of template nesting. Therefore we resort to template // template to "flatten" loosened return value types. // At some point we use partial specialization to remove one level // template nesting due to _Expr<> //
// This class is NOT defined. It doesn't need to. template<typename _Tp1, typename _Tp2> class _Constant;
// Implementations of unary functions applied to valarray<>s. // I use hard-coded object functions here instead of a generic // approach like pointers to function: // 1) correctness: some functions take references, others values. // we can't deduce the correct type afterwards. // 2) efficiency -- object functions can be easily inlined // 3) be Koenig-lookup-friendly
struct __abs { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return abs(__t); } };
struct __cos { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return cos(__t); } };
struct __acos { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return acos(__t); } };
struct __cosh { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return cosh(__t); } };
struct __sin { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return sin(__t); } };
struct __asin { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return asin(__t); } };
struct __sinh { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return sinh(__t); } };
struct __tan { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return tan(__t); } };
struct __atan { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return atan(__t); } };
struct __tanh { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return tanh(__t); } };
struct __exp { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return exp(__t); } };
struct __log { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return log(__t); } };
struct __log10 { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return log10(__t); } };
struct __sqrt { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return sqrt(__t); } };
// In the past, we used to tailor operator applications semantics // to the specialization of standard function objects (i.e. plus<>, etc.) // That is incorrect. Therefore we provide our own surrogates.
struct __unary_plus { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return +__t; } };
struct __negate { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return -__t; } };
struct __bitwise_not { template<typename _Tp> _Tp operator()(const _Tp& __t) const { return ~__t; } };
struct __plus { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x + __y; } };
struct __minus { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x - __y; } };
struct __multiplies { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x * __y; } };
struct __divides { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x / __y; } };
struct __modulus { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x % __y; } };
struct __bitwise_xor { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x ^ __y; } };
struct __bitwise_and { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x & __y; } };
struct __bitwise_or { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x | __y; } };
struct __shift_left { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x << __y; } };
struct __shift_right { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return __x >> __y; } };
struct __logical_and { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x && __y; } };
struct __logical_or { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x || __y; } };
struct __logical_not { template<typename _Tp> bool operator()(const _Tp& __x) const { return !__x; } };
struct __equal_to { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x == __y; } };
struct __not_equal_to { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x != __y; } };
struct __less { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x < __y; } };
struct __greater { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x > __y; } };
struct __less_equal { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x <= __y; } };
struct __greater_equal { template<typename _Tp> bool operator()(const _Tp& __x, const _Tp& __y) const { return __x >= __y; } };
// The few binary functions we miss. struct __atan2 { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return atan2(__x, __y); } };
struct __pow { template<typename _Tp> _Tp operator()(const _Tp& __x, const _Tp& __y) const { return pow(__x, __y); } };
// We need these bits in order to recover the return type of // some functions/operators now that we're no longer using // function templates. template<typename, typename _Tp> struct __fun { typedef _Tp result_type; };
// several specializations for relational operators. template<typename _Tp> struct __fun<__logical_not, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__logical_and, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__logical_or, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__less, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__greater, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__less_equal, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__greater_equal, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__equal_to, _Tp> { typedef bool result_type; };
template<typename _Tp> struct __fun<__not_equal_to, _Tp> { typedef bool result_type; };
// // Apply function taking a value/const reference closure //
template<typename _Dom, typename _Arg> class _FunBase { public: typedef typename _Dom::value_type value_type;
_FunBase(const _Dom& __e, value_type __f(_Arg)) : _M_expr(__e), _M_func(__f) {}
value_type operator[](size_t __i) const { return _M_func (_M_expr[__i]); }
size_t size() const { return _M_expr.size ();}
private: const _Dom& _M_expr; value_type (*_M_func)(_Arg); };
template<class _Dom> struct _ValFunClos<_Expr,_Dom> : _FunBase<_Dom, typename _Dom::value_type> { typedef _FunBase<_Dom, typename _Dom::value_type> _Base; typedef typename _Base::value_type value_type; typedef value_type _Tp;
_ValFunClos(const _Dom& __e, _Tp __f(_Tp)) : _Base(__e, __f) {} };
template<typename _Tp> struct _ValFunClos<_ValArray,_Tp> : _FunBase<valarray<_Tp>, _Tp> { typedef _FunBase<valarray<_Tp>, _Tp> _Base; typedef _Tp value_type;
_ValFunClos(const valarray<_Tp>& __v, _Tp __f(_Tp)) : _Base(__v, __f) {} };
template<class _Dom> struct _RefFunClos<_Expr, _Dom> : _FunBase<_Dom, const typename _Dom::value_type&> { typedef _FunBase<_Dom, const typename _Dom::value_type&> _Base; typedef typename _Base::value_type value_type; typedef value_type _Tp;
_RefFunClos(const _Dom& __e, _Tp __f(const _Tp&)) : _Base(__e, __f) {} };
template<typename _Tp> struct _RefFunClos<_ValArray, _Tp> : _FunBase<valarray<_Tp>, const _Tp&> { typedef _FunBase<valarray<_Tp>, const _Tp&> _Base; typedef _Tp value_type;
_RefFunClos(const valarray<_Tp>& __v, _Tp __f(const _Tp&)) : _Base(__v, __f) {} };
// // Unary expression closure. //
template<class _Oper, class _Arg> class _UnBase { public: typedef typename _Arg::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type;
_UnBase(const _Arg& __e) : _M_expr(__e) {}
value_type operator[](size_t __i) const { return _Oper()(_M_expr[__i]); }
size_t size() const { return _M_expr.size(); } private: const _Arg& _M_expr; };
template<class _Oper, class _Dom> struct _UnClos<_Oper, _Expr, _Dom> : _UnBase<_Oper, _Dom> { typedef _Dom _Arg; typedef _UnBase<_Oper, _Dom> _Base; typedef typename _Base::value_type value_type;
_UnClos(const _Arg& __e) : _Base(__e) {} };
template<class _Oper, typename _Tp> struct _UnClos<_Oper, _ValArray, _Tp> : _UnBase<_Oper, valarray<_Tp> > { typedef valarray<_Tp> _Arg; typedef _UnBase<_Oper, valarray<_Tp> > _Base; typedef typename _Base::value_type value_type;
_UnClos(const _Arg& __e) : _Base(__e) {} };
// // Binary expression closure. //
template<class _Oper, class _FirstArg, class _SecondArg> class _BinBase { public: typedef typename _FirstArg::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase(const _FirstArg& __e1, const _SecondArg& __e2) : _M_expr1(__e1), _M_expr2(__e2) {}
value_type operator[](size_t __i) const { return _Oper()(_M_expr1[__i], _M_expr2[__i]); }
size_t size() const { return _M_expr1.size(); }
private: const _FirstArg& _M_expr1; const _SecondArg& _M_expr2; };
template<class _Oper, class _Clos> class _BinBase2 { public: typedef typename _Clos::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase2(const _Clos& __e, const _Vt& __t) : _M_expr1(__e), _M_expr2(__t) {}
value_type operator[](size_t __i) const { return _Oper()(_M_expr1[__i], _M_expr2); }
size_t size() const { return _M_expr1.size(); }
private: const _Clos& _M_expr1; const _Vt& _M_expr2; };
template<class _Oper, class _Clos> class _BinBase1 { public: typedef typename _Clos::value_type _Vt; typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase1(const _Vt& __t, const _Clos& __e) : _M_expr1(__t), _M_expr2(__e) {}
value_type operator[](size_t __i) const { return _Oper()(_M_expr1, _M_expr2[__i]); }
size_t size() const { return _M_expr2.size(); }
private: const _Vt& _M_expr1; const _Clos& _M_expr2; };
template<class _Oper, class _Dom1, class _Dom2> struct _BinClos<_Oper, _Expr, _Expr, _Dom1, _Dom2> : _BinBase<_Oper, _Dom1, _Dom2> { typedef _BinBase<_Oper, _Dom1, _Dom2> _Base; typedef typename _Base::value_type value_type;
_BinClos(const _Dom1& __e1, const _Dom2& __e2) : _Base(__e1, __e2) {} };
template<class _Oper, typename _Tp> struct _BinClos<_Oper,_ValArray, _ValArray, _Tp, _Tp> : _BinBase<_Oper, valarray<_Tp>, valarray<_Tp> > { typedef _BinBase<_Oper, valarray<_Tp>, valarray<_Tp> > _Base; typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __v, const valarray<_Tp>& __w) : _Base(__v, __w) {} };
template<class _Oper, class _Dom> struct _BinClos<_Oper, _Expr, _ValArray, _Dom, typename _Dom::value_type> : _BinBase<_Oper, _Dom, valarray<typename _Dom::value_type> > { typedef typename _Dom::value_type _Tp; typedef _BinBase<_Oper,_Dom,valarray<_Tp> > _Base; typedef typename _Base::value_type value_type;
_BinClos(const _Dom& __e1, const valarray<_Tp>& __e2) : _Base(__e1, __e2) {} };
template<class _Oper, class _Dom> struct _BinClos<_Oper, _ValArray, _Expr, typename _Dom::value_type, _Dom> : _BinBase<_Oper, valarray<typename _Dom::value_type>,_Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase<_Oper, valarray<_Tp>, _Dom> _Base; typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __e1, const _Dom& __e2) : _Base(__e1, __e2) {} };
template<class _Oper, class _Dom> struct _BinClos<_Oper, _Expr, _Constant, _Dom, typename _Dom::value_type> : _BinBase2<_Oper, _Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase2<_Oper,_Dom> _Base; typedef typename _Base::value_type value_type;
_BinClos(const _Dom& __e1, const _Tp& __e2) : _Base(__e1, __e2) {} };
template<class _Oper, class _Dom> struct _BinClos<_Oper, _Constant, _Expr, typename _Dom::value_type, _Dom> : _BinBase1<_Oper, _Dom> { typedef typename _Dom::value_type _Tp; typedef _BinBase1<_Oper, _Dom> _Base; typedef typename _Base::value_type value_type;
_BinClos(const _Tp& __e1, const _Dom& __e2) : _Base(__e1, __e2) {} };
template<class _Oper, typename _Tp> struct _BinClos<_Oper, _ValArray, _Constant, _Tp, _Tp> : _BinBase2<_Oper, valarray<_Tp> > { typedef _BinBase2<_Oper,valarray<_Tp> > _Base; typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __v, const _Tp& __t) : _Base(__v, __t) {} };
template<class _Oper, typename _Tp> struct _BinClos<_Oper, _Constant, _ValArray, _Tp, _Tp> : _BinBase1<_Oper, valarray<_Tp> > { typedef _BinBase1<_Oper, valarray<_Tp> > _Base; typedef typename _Base::value_type value_type;
_BinClos(const _Tp& __t, const valarray<_Tp>& __v) : _Base(__t, __v) {} };
// // slice_array closure. // template<typename _Dom> class _SBase { public: typedef typename _Dom::value_type value_type; _SBase (const _Dom& __e, const slice& __s) : _M_expr (__e), _M_slice (__s) {} value_type operator[] (size_t __i) const { return _M_expr[_M_slice.start () + __i * _M_slice.stride ()]; } size_t size() const { return _M_slice.size (); }
private: const _Dom& _M_expr; const slice& _M_slice; };
template<typename _Tp> class _SBase<_Array<_Tp> > { public: typedef _Tp value_type; _SBase (_Array<_Tp> __a, const slice& __s) : _M_array (__a._M_data+__s.start()), _M_size (__s.size()), _M_stride (__s.stride()) {} value_type operator[] (size_t __i) const { return _M_array._M_data[__i * _M_stride]; } size_t size() const { return _M_size; }
private: const _Array<_Tp> _M_array; const size_t _M_size; const size_t _M_stride; };
template<class _Dom> struct _SClos<_Expr, _Dom> : _SBase<_Dom> { typedef _SBase<_Dom> _Base; typedef typename _Base::value_type value_type; _SClos (const _Dom& __e, const slice& __s) : _Base (__e, __s) {} };
template<typename _Tp> struct _SClos<_ValArray, _Tp> : _SBase<_Array<_Tp> > { typedef _SBase<_Array<_Tp> > _Base; typedef _Tp value_type; _SClos (_Array<_Tp> __a, const slice& __s) : _Base (__a, __s) {} };
_GLIBCXX_END_NAMESPACE
#endif /* _CPP_VALARRAY_BEFORE_H */
|