Viewing file: hashtable.h (32.2 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// Hashtable implementation used by containers -*- C++ -*-
// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version.
// This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA.
// As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License.
/* * Copyright (c) 1996,1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * */
/** @file ext/hashtable.h * This file is a GNU extension to the Standard C++ Library (possibly * containing extensions from the HP/SGI STL subset). */
#ifndef _HASHTABLE_H #define _HASHTABLE_H 1
// Hashtable class, used to implement the hashed associative containers // hash_set, hash_map, hash_multiset, and hash_multimap.
#include <vector> #include <iterator> #include <bits/stl_algo.h> #include <bits/stl_function.h> #include <ext/hash_fun.h>
_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
using std::size_t; using std::ptrdiff_t; using std::forward_iterator_tag; using std::input_iterator_tag; using std::_Construct; using std::_Destroy; using std::distance; using std::vector; using std::pair; using std::__iterator_category;
template<class _Val> struct _Hashtable_node { _Hashtable_node* _M_next; _Val _M_val; };
template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc = std::allocator<_Val> > class hashtable;
template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_iterator;
template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_const_iterator;
template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_iterator { typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> _Hashtable; typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node; typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef _Val& reference; typedef _Val* pointer; _Node* _M_cur; _Hashtable* _M_ht;
_Hashtable_iterator(_Node* __n, _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) { }
_Hashtable_iterator() { }
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& __it) const { return _M_cur == __it._M_cur; }
bool operator!=(const iterator& __it) const { return _M_cur != __it._M_cur; } };
template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> struct _Hashtable_const_iterator { typedef hashtable<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> _Hashtable; typedef _Hashtable_iterator<_Val,_Key,_HashFcn, _ExtractKey,_EqualKey,_Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator; typedef _Hashtable_node<_Val> _Node;
typedef forward_iterator_tag iterator_category; typedef _Val value_type; typedef ptrdiff_t difference_type; typedef size_t size_type; typedef const _Val& reference; typedef const _Val* pointer; const _Node* _M_cur; const _Hashtable* _M_ht;
_Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab) : _M_cur(__n), _M_ht(__tab) { }
_Hashtable_const_iterator() { }
_Hashtable_const_iterator(const iterator& __it) : _M_cur(__it._M_cur), _M_ht(__it._M_ht) { }
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
const_iterator& operator++();
const_iterator operator++(int);
bool operator==(const const_iterator& __it) const { return _M_cur == __it._M_cur; }
bool operator!=(const const_iterator& __it) const { return _M_cur != __it._M_cur; } };
// Note: assumes long is at least 32 bits. enum { _S_num_primes = 28 };
static const unsigned long __stl_prime_list[_S_num_primes] = { 53ul, 97ul, 193ul, 389ul, 769ul, 1543ul, 3079ul, 6151ul, 12289ul, 24593ul, 49157ul, 98317ul, 196613ul, 393241ul, 786433ul, 1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul, 50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul, 1610612741ul, 3221225473ul, 4294967291ul };
inline unsigned long __stl_next_prime(unsigned long __n) { const unsigned long* __first = __stl_prime_list; const unsigned long* __last = __stl_prime_list + (int)_S_num_primes; const unsigned long* pos = std::lower_bound(__first, __last, __n); return pos == __last ? *(__last - 1) : *pos; }
// Forward declaration of operator==. template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> class hashtable;
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2);
// Hashtables handle allocators a bit differently than other // containers do. If we're using standard-conforming allocators, then // a hashtable unconditionally has a member variable to hold its // allocator, even if it so happens that all instances of the // allocator type are identical. This is because, for hashtables, // this extra storage is negligible. Additionally, a base class // wouldn't serve any other purposes; it wouldn't, for example, // simplify the exception-handling code. template<class _Val, class _Key, class _HashFcn, class _ExtractKey, class _EqualKey, class _Alloc> class hashtable { public: typedef _Key key_type; typedef _Val value_type; typedef _HashFcn hasher; typedef _EqualKey key_equal;
typedef size_t size_type; typedef ptrdiff_t difference_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference;
hasher hash_funct() const { return _M_hash; }
key_equal key_eq() const { return _M_equals; }
private: typedef _Hashtable_node<_Val> _Node;
public: typedef typename _Alloc::template rebind<value_type>::other allocator_type; allocator_type get_allocator() const { return _M_node_allocator; }
private: typedef typename _Alloc::template rebind<_Node>::other _Node_Alloc; typedef typename _Alloc::template rebind<_Node*>::other _Nodeptr_Alloc; typedef vector<_Node*, _Nodeptr_Alloc> _Vector_type;
_Node_Alloc _M_node_allocator;
_Node* _M_get_node() { return _M_node_allocator.allocate(1); }
void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); }
private: hasher _M_hash; key_equal _M_equals; _ExtractKey _M_get_key; _Vector_type _M_buckets; size_type _M_num_elements; public: typedef _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> iterator; typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc> const_iterator;
friend struct _Hashtable_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>;
friend struct _Hashtable_const_iterator<_Val, _Key, _HashFcn, _ExtractKey, _EqualKey, _Alloc>;
public: hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const _ExtractKey& __ext, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(__ext), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); }
hashtable(size_type __n, const _HashFcn& __hf, const _EqualKey& __eql, const allocator_type& __a = allocator_type()) : _M_node_allocator(__a), _M_hash(__hf), _M_equals(__eql), _M_get_key(_ExtractKey()), _M_buckets(__a), _M_num_elements(0) { _M_initialize_buckets(__n); }
hashtable(const hashtable& __ht) : _M_node_allocator(__ht.get_allocator()), _M_hash(__ht._M_hash), _M_equals(__ht._M_equals), _M_get_key(__ht._M_get_key), _M_buckets(__ht.get_allocator()), _M_num_elements(0) { _M_copy_from(__ht); }
hashtable& operator= (const hashtable& __ht) { if (&__ht != this) { clear(); _M_hash = __ht._M_hash; _M_equals = __ht._M_equals; _M_get_key = __ht._M_get_key; _M_copy_from(__ht); } return *this; }
~hashtable() { clear(); }
size_type size() const { return _M_num_elements; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return size() == 0; }
void swap(hashtable& __ht) { std::swap(_M_hash, __ht._M_hash); std::swap(_M_equals, __ht._M_equals); std::swap(_M_get_key, __ht._M_get_key); _M_buckets.swap(__ht._M_buckets); std::swap(_M_num_elements, __ht._M_num_elements); }
iterator begin() { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return iterator(_M_buckets[__n], this); return end(); }
iterator end() { return iterator(0, this); }
const_iterator begin() const { for (size_type __n = 0; __n < _M_buckets.size(); ++__n) if (_M_buckets[__n]) return const_iterator(_M_buckets[__n], this); return end(); }
const_iterator end() const { return const_iterator(0, this); }
template<class _Vl, class _Ky, class _HF, class _Ex, class _Eq, class _Al> friend bool operator==(const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&, const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&);
public: size_type bucket_count() const { return _M_buckets.size(); }
size_type max_bucket_count() const { return __stl_prime_list[(int)_S_num_primes - 1]; }
size_type elems_in_bucket(size_type __bucket) const { size_type __result = 0; for (_Node* __n = _M_buckets[__bucket]; __n; __n = __n->_M_next) __result += 1; return __result; }
pair<iterator, bool> insert_unique(const value_type& __obj) { resize(_M_num_elements + 1); return insert_unique_noresize(__obj); }
iterator insert_equal(const value_type& __obj) { resize(_M_num_elements + 1); return insert_equal_noresize(__obj); }
pair<iterator, bool> insert_unique_noresize(const value_type& __obj);
iterator insert_equal_noresize(const value_type& __obj);
template<class _InputIterator> void insert_unique(_InputIterator __f, _InputIterator __l) { insert_unique(__f, __l, __iterator_category(__f)); }
template<class _InputIterator> void insert_equal(_InputIterator __f, _InputIterator __l) { insert_equal(__f, __l, __iterator_category(__f)); }
template<class _InputIterator> void insert_unique(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_unique(*__f); }
template<class _InputIterator> void insert_equal(_InputIterator __f, _InputIterator __l, input_iterator_tag) { for ( ; __f != __l; ++__f) insert_equal(*__f); }
template<class _ForwardIterator> void insert_unique(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = distance(__f, __l); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_unique_noresize(*__f); }
template<class _ForwardIterator> void insert_equal(_ForwardIterator __f, _ForwardIterator __l, forward_iterator_tag) { size_type __n = distance(__f, __l); resize(_M_num_elements + __n); for ( ; __n > 0; --__n, ++__f) insert_equal_noresize(*__f); }
reference find_or_insert(const value_type& __obj);
iterator find(const key_type& __key) { size_type __n = _M_bkt_num_key(__key); _Node* __first; for (__first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) { } return iterator(__first, this); }
const_iterator find(const key_type& __key) const { size_type __n = _M_bkt_num_key(__key); const _Node* __first; for (__first = _M_buckets[__n]; __first && !_M_equals(_M_get_key(__first->_M_val), __key); __first = __first->_M_next) { } return const_iterator(__first, this); }
size_type count(const key_type& __key) const { const size_type __n = _M_bkt_num_key(__key); size_type __result = 0; for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), __key)) ++__result; return __result; }
pair<iterator, iterator> equal_range(const key_type& __key);
pair<const_iterator, const_iterator> equal_range(const key_type& __key) const;
size_type erase(const key_type& __key); void erase(const iterator& __it);
void erase(iterator __first, iterator __last);
void erase(const const_iterator& __it);
void erase(const_iterator __first, const_iterator __last);
void resize(size_type __num_elements_hint);
void clear();
private: size_type _M_next_size(size_type __n) const { return __stl_next_prime(__n); }
void _M_initialize_buckets(size_type __n) { const size_type __n_buckets = _M_next_size(__n); _M_buckets.reserve(__n_buckets); _M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0); _M_num_elements = 0; }
size_type _M_bkt_num_key(const key_type& __key) const { return _M_bkt_num_key(__key, _M_buckets.size()); }
size_type _M_bkt_num(const value_type& __obj) const { return _M_bkt_num_key(_M_get_key(__obj)); }
size_type _M_bkt_num_key(const key_type& __key, size_t __n) const { return _M_hash(__key) % __n; }
size_type _M_bkt_num(const value_type& __obj, size_t __n) const { return _M_bkt_num_key(_M_get_key(__obj), __n); }
_Node* _M_new_node(const value_type& __obj) { _Node* __n = _M_get_node(); __n->_M_next = 0; try { this->get_allocator().construct(&__n->_M_val, __obj); return __n; } catch(...) { _M_put_node(__n); __throw_exception_again; } }
void _M_delete_node(_Node* __n) { this->get_allocator().destroy(&__n->_M_val); _M_put_node(__n); } void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last);
void _M_erase_bucket(const size_type __n, _Node* __last);
void _M_copy_from(const hashtable& __ht); };
template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>& _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; }
template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> inline _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All> _Hashtable_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++(int) { iterator __tmp = *this; ++*this; return __tmp; }
template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>& _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++() { const _Node* __old = _M_cur; _M_cur = _M_cur->_M_next; if (!_M_cur) { size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val); while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size()) _M_cur = _M_ht->_M_buckets[__bucket]; } return *this; }
template<class _Val, class _Key, class _HF, class _ExK, class _EqK, class _All> inline _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All> _Hashtable_const_iterator<_Val, _Key, _HF, _ExK, _EqK, _All>:: operator++(int) { const_iterator __tmp = *this; ++*this; return __tmp; }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> bool operator==(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2) { typedef typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::_Node _Node;
if (__ht1._M_buckets.size() != __ht2._M_buckets.size()) return false;
for (size_t __n = 0; __n < __ht1._M_buckets.size(); ++__n) { _Node* __cur1 = __ht1._M_buckets[__n]; _Node* __cur2 = __ht2._M_buckets[__n]; // Check same length of lists for (; __cur1 && __cur2; __cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next) { } if (__cur1 || __cur2) return false; // Now check one's elements are in the other for (__cur1 = __ht1._M_buckets[__n] ; __cur1; __cur1 = __cur1->_M_next) { bool _found__cur1 = false; for (__cur2 = __ht2._M_buckets[__n]; __cur2; __cur2 = __cur2->_M_next) { if (__cur1->_M_val == __cur2->_M_val) { _found__cur1 = true; break; } } if (!_found__cur1) return false; } } return true; }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline bool operator!=(const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht1, const hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>& __ht2) { return !(__ht1 == __ht2); }
template<class _Val, class _Key, class _HF, class _Extract, class _EqKey, class _All> inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1, hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) { __ht1.swap(__ht2); }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator, bool> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: insert_unique_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return pair<iterator, bool>(iterator(__cur, this), false); _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return pair<iterator, bool>(iterator(__tmp, this), true); }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: insert_equal_noresize(const value_type& __obj) { const size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) { _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __cur->_M_next; __cur->_M_next = __tmp; ++_M_num_elements; return iterator(__tmp, this); }
_Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return iterator(__tmp, this); }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::reference hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: find_or_insert(const value_type& __obj) { resize(_M_num_elements + 1);
size_type __n = _M_bkt_num(__obj); _Node* __first = _M_buckets[__n]; for (_Node* __cur = __first; __cur; __cur = __cur->_M_next) if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) return __cur->_M_val; _Node* __tmp = _M_new_node(__obj); __tmp->_M_next = __first; _M_buckets[__n] = __tmp; ++_M_num_elements; return __tmp->_M_val; }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator, typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::iterator> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: equal_range(const key_type& __key) { typedef pair<iterator, iterator> _Pii; const size_type __n = _M_bkt_num_key(__key);
for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(iterator(__first, this), iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(iterator(__first, this), iterator(_M_buckets[__m], this)); return _Pii(iterator(__first, this), end()); } return _Pii(end(), end()); }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> pair<typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::const_iterator, typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::const_iterator> hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: equal_range(const key_type& __key) const { typedef pair<const_iterator, const_iterator> _Pii; const size_type __n = _M_bkt_num_key(__key);
for (const _Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next) { if (_M_equals(_M_get_key(__first->_M_val), __key)) { for (const _Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next) if (!_M_equals(_M_get_key(__cur->_M_val), __key)) return _Pii(const_iterator(__first, this), const_iterator(__cur, this)); for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m) if (_M_buckets[__m]) return _Pii(const_iterator(__first, this), const_iterator(_M_buckets[__m], this)); return _Pii(const_iterator(__first, this), end()); } } return _Pii(end(), end()); }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> typename hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>::size_type hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const key_type& __key) { const size_type __n = _M_bkt_num_key(__key); _Node* __first = _M_buckets[__n]; size_type __erased = 0; if (__first) { _Node* __cur = __first; _Node* __next = __cur->_M_next; while (__next) { if (_M_equals(_M_get_key(__next->_M_val), __key)) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; ++__erased; --_M_num_elements; } else { __cur = __next; __next = __cur->_M_next; } } if (_M_equals(_M_get_key(__first->_M_val), __key)) { _M_buckets[__n] = __first->_M_next; _M_delete_node(__first); ++__erased; --_M_num_elements; } } return __erased; }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const iterator& __it) { _Node* __p = __it._M_cur; if (__p) { const size_type __n = _M_bkt_num(__p->_M_val); _Node* __cur = _M_buckets[__n]; if (__cur == __p) { _M_buckets[__n] = __cur->_M_next; _M_delete_node(__cur); --_M_num_elements; } else { _Node* __next = __cur->_M_next; while (__next) { if (__next == __p) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); --_M_num_elements; break; } else { __cur = __next; __next = __cur->_M_next; } } } } }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(iterator __first, iterator __last) { size_type __f_bucket = __first._M_cur ? _M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
size_type __l_bucket = __last._M_cur ? _M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();
if (__first._M_cur == __last._M_cur) return; else if (__f_bucket == __l_bucket) _M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur); else { _M_erase_bucket(__f_bucket, __first._M_cur, 0); for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n) _M_erase_bucket(__n, 0); if (__l_bucket != _M_buckets.size()) _M_erase_bucket(__l_bucket, __last._M_cur); } }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const_iterator __first, const_iterator __last) { erase(iterator(const_cast<_Node*>(__first._M_cur), const_cast<hashtable*>(__first._M_ht)), iterator(const_cast<_Node*>(__last._M_cur), const_cast<hashtable*>(__last._M_ht))); }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> inline void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: erase(const const_iterator& __it) { erase(iterator(const_cast<_Node*>(__it._M_cur), const_cast<hashtable*>(__it._M_ht))); }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: resize(size_type __num_elements_hint) { const size_type __old_n = _M_buckets.size(); if (__num_elements_hint > __old_n) { const size_type __n = _M_next_size(__num_elements_hint); if (__n > __old_n) { _Vector_type __tmp(__n, (_Node*)(0), _M_buckets.get_allocator()); try { for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) { _Node* __first = _M_buckets[__bucket]; while (__first) { size_type __new_bucket = _M_bkt_num(__first->_M_val, __n); _M_buckets[__bucket] = __first->_M_next; __first->_M_next = __tmp[__new_bucket]; __tmp[__new_bucket] = __first; __first = _M_buckets[__bucket]; } } _M_buckets.swap(__tmp); } catch(...) { for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) { while (__tmp[__bucket]) { _Node* __next = __tmp[__bucket]->_M_next; _M_delete_node(__tmp[__bucket]); __tmp[__bucket] = __next; } } __throw_exception_again; } } } }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last) { _Node* __cur = _M_buckets[__n]; if (__cur == __first) _M_erase_bucket(__n, __last); else { _Node* __next; for (__next = __cur->_M_next; __next != __first; __cur = __next, __next = __cur->_M_next) ; while (__next != __last) { __cur->_M_next = __next->_M_next; _M_delete_node(__next); __next = __cur->_M_next; --_M_num_elements; } } }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_erase_bucket(const size_type __n, _Node* __last) { _Node* __cur = _M_buckets[__n]; while (__cur != __last) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; _M_buckets[__n] = __cur; --_M_num_elements; } }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: clear() { for (size_type __i = 0; __i < _M_buckets.size(); ++__i) { _Node* __cur = _M_buckets[__i]; while (__cur != 0) { _Node* __next = __cur->_M_next; _M_delete_node(__cur); __cur = __next; } _M_buckets[__i] = 0; } _M_num_elements = 0; }
template<class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All> void hashtable<_Val, _Key, _HF, _Ex, _Eq, _All>:: _M_copy_from(const hashtable& __ht) { _M_buckets.clear(); _M_buckets.reserve(__ht._M_buckets.size()); _M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0); try { for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) { const _Node* __cur = __ht._M_buckets[__i]; if (__cur) { _Node* __local_copy = _M_new_node(__cur->_M_val); _M_buckets[__i] = __local_copy; for (_Node* __next = __cur->_M_next; __next; __cur = __next, __next = __cur->_M_next) { __local_copy->_M_next = _M_new_node(__next->_M_val); __local_copy = __local_copy->_M_next; } } } _M_num_elements = __ht._M_num_elements; } catch(...) { clear(); __throw_exception_again; } }
_GLIBCXX_END_NAMESPACE
#endif
|